Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications
Abstract
:1. Introduction
2. Different Varieties of Food and Plant Generation Waste and Their Significance
3. Waste-Inspired Electrochemical Applications
4. Bio-Generated Carbon Template/Systems for Energy Storage
S. No. | Name of Waste | Specific Surface Area | Capacitance Retention | Current Density | Reference |
---|---|---|---|---|---|
1. | Aloe Peel | 1286 m2 g−1 | 91% | 30 A g−1 | [12] |
2. | Banana Peel | 1362 m2 g−1 | 100% | 5 A g−1 | [6] |
3. | Cassava Peel | 398 m2 g−1 | 66% | - | [61] |
4. | Coconut Husk | 1000 m2 g−1 | - | 0.05 A g−1 | [58] |
5. | Garlic Peel | 1710 m2 g−1 | 95% | 1 A g−1 | [13] |
6. | Melo Fruit Peel | 721 m2 g−1 | 91% | 1 A g−1 | [62] |
7. | Pomelo Peel | 807 m2 g−1 | 100% | 5 A g−1 | [63] |
8. | Rice Husk | 1768 m2 g−1 | 95% | 0.05 A g−1 | [54] |
9. | Shaddok Peel | 2475 m2 g−1 | - | 0.5 A g−1 | [64] |
10. | Willow Catkin | 645 | 92% | 0.1 A g−1 | [10] |
5. Mapping of Biomass Generation
6. Phyto-Nutrient-Based Sensing Platform
7. Advantages of These Eco-Friendly Alternatives
8. Downside of Using These Systems
9. Conclusions and Future Prospects
Funding
Acknowledgments
Conflicts of Interest
References
- Kour, R.; Singh, S.; Sharma, H.B.; Naik, T.S.K.; Shehata, N.; Pavithra, N.; Ali, W.; Kapoor, D.; Dhanjal, D.S.; Singh, J.; et al. Persistence and remote sensing of agri-food wastes in the environment: Current state and perspectives. Chemosphere 2023, 317, 137822. [Google Scholar] [CrossRef] [PubMed]
- Wesley, R.J.; Durairaj, A.; Ramanathan, S.; Obadiah, A.; Justinabraham, R.; Lv, X.; Vasanthkumar, S. Potato peels biochar composite with copper phthalocyanine for energy storage application. Diam. Relat. Mater. 2021, 115, 108360. [Google Scholar] [CrossRef]
- Hoyos-Arbeláez, J.; Blandón-Naranjo, L.; Vázquez, M.; Contreras-Calderón, J. Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chem. 2018, 266, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Han, K.; Teng, Z.; Li, J.; Wang, M.; Zhang, J.; Cao, Y.; Qi, J. Synthesis of Activated Carbon Derived from Garlic Peel and Its Electrochemical Properties. Int. J. Electrochem. Sci. 2021, 16, 150653. [Google Scholar] [CrossRef]
- Wu, T.; Guan, Y.; Ye, J. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem. 2007, 100, 1573–1579. [Google Scholar] [CrossRef]
- Fasakin, O.; Dangbegnon, J.; Momodu, D.; Madito, M.; Oyedotun, K.; Eleruja, M.; Manyala, N. Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochim. Acta 2018, 262, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Akshaya, K.B.; Bhat, V.S.; Varghese, A.; George, L.; Hegde, G. Non-Enzymatic Electrochemical Determination of Progesterone Using Carbon Nanospheres from Onion Peels Coated on Carbon Fiber Paper. J. Electrochem. Soc. 2019, 166, B1097–B1106. [Google Scholar] [CrossRef]
- Araniti, F.; Gullì, T.; Marrelli, M.; Statti, G.; Gelsomino, A.; Abenavoli, M.R. Artemisia arborescens L. leaf litter: Phytotoxic activity and phytochemical characterization. Acta Physiol. Plant. 2016, 38, 128. [Google Scholar] [CrossRef]
- Ronda, A.; Martín-Lara, M.; Dionisio, E.; Blázquez, G.; Calero, M. Effect of lead in biosorption of copper by almond shell. J. Taiwan Inst. Chem. Eng. 2013, 44, 466–473. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 2015, 166, 1–11. [Google Scholar] [CrossRef]
- Wei, Y.; Xie, J.; Shen, C.; Lu, L.; Ji, J. Electrochemically assisted pyrolysis of rice straw in molten carbonates. Renew. Energy 2020, 159, 929–937. [Google Scholar] [CrossRef]
- Wang, Z.; Yun, S.; Wang, X.; Wang, C.; Si, Y.; Zhang, Y.; Xu, H. Aloe peel-derived honeycomb-like bio-based carbon with controllable morphology and its superior electrochemical properties for new energy devices. Ceram. Int. 2018, 45, 4208–4218. [Google Scholar] [CrossRef]
- Selvamani, V.; Ravikumar, R.; Suryanarayanan, V.; Velayutham, D.; Gopukumar, S. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim. Acta 2016, 190, 337–345. [Google Scholar] [CrossRef]
- Lv, Y.; Gan, L.; Liu, M.; Xiong, W.; Xu, Z.; Zhu, D.; Wright, D.S. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources 2012, 209, 152–157. [Google Scholar] [CrossRef]
- Łata, B. Relationship between Apple Peel and the Whole Fruit Antioxidant Content: Year and Cultivar Variation. J. Agric. Food Chem. 2007, 55, 663–671. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Apple Peels as a Value-Added Food Ingredient. J. Agric. Food Chem. 2003, 51, 1676–1683. [Google Scholar] [CrossRef]
- Hussein, H.S.; Shaarawy, H.H.; Hussien, N.H.; I Hawash, S. Preparation of nano-fertilizer blend from banana peels. Bull. Natl. Res. Cent. 2019, 43, 26. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Sharabani, T.; Evenstein, E.; Nessim, G.D.; Noked, M.; Sharma, R. Probing Electrochemical Behaviour of Lignocellulosic, Orange Peel Derived Hard Carbon as Anode for Sodium Ion Battery. J. Electrochem. Soc. 2020, 167, 090505. [Google Scholar] [CrossRef]
- Petchiammal, A.; Selvaraj, S.; Kalirajan, K. Electrochemical Investigation of Manilkara zapota fruit Peel Extract on Mild Steel in Acid Medium. Int. J. Appl. Sci. Res. Rev. 2014, 1, 88–92. [Google Scholar]
- Dahunsi, S.O.; Oranusi, S.; Efeovbokhan, V.E.; Adesulu-Dahunsi, A.T.; Ogunwole, J.O. Crop performance and soil fertility improvement using organic fertilizer produced from valorization of Carica papaya fruit peel. Sci. Rep. 2021, 11, 4696. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Verma, R.; Bhardwaj, P.; Sharma, S.; Kumar, D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, S.H.; Rupasinghe, H.V.; Needs, P.W. Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation. Food Chem. 2013, 138, 463–470. [Google Scholar] [CrossRef]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from Plants Protect against Skin Photoaging. Oxidative Med. Cell. Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef] [Green Version]
- Perry, A.; Rasmussen, H.; Johnson, E.J. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J. Food Compos. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Waste to Wealth: A Case Study of Papaya Peel. Waste Biomass Valorization 2018, 10, 1755–1766. [Google Scholar] [CrossRef]
- Sutomo, S.; Wahyuono, S.; Riyanto, S.; Setyowati, E.P. Antioxidant activity assay of extracts and active fractions of kasturi fruit (Mangifera casturi Kosterm.) using 1, 1-diphenyl-2-picrylhydrazyl method. J. Nat. Prod. 2014, 7, 124–130. [Google Scholar]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products:: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Ponnuswamy, Y. Phytochemical Screening and Antimicrobial Potential of Melia. World J. Pharm. Res. 2019, 4, 34–43. [Google Scholar]
- Lim, T.K. Edible Medicinal and Non Medicinal Plants, 2nd ed.; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar]
- Mathew, B.B.; Jaishankar, M.; Biju, V.G.; Beeregowda, K.N. Role of Bioadsorbents in Reducing Toxic Metals. J. Toxicol. 2016, 2016, 4369604. [Google Scholar] [CrossRef] [Green Version]
- Danmaliki, G.I.; Muhammad, A.M.; Shamsuddeen, A.A.; Usman, B.J. Bioethanol Production from Banana Peels. IOSR J. Environ. Sci. 2016, 10, 56–62. [Google Scholar]
- Bouaziz, F.; Ben Abdeddayem, A.; Koubaa, M.; Barba, F.J.; Ben Jeddou, K.; Kacem, I.; Ghorbel, R.E.; Chaabouni, S.E. Bioethanol Production from Date Seed Cellulosic Fraction Using Saccharomyces cerevisiae. Separations 2020, 7, 67. [Google Scholar] [CrossRef]
- Pavan, F.A.; Mazzocato, A.C.; Gushikem, Y. Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresour. Technol. 2008, 99, 3162–3165. [Google Scholar] [CrossRef]
- Romero-Cano, L.A.; García-Rosero, H.; Baldenegro-Pérez, L.A.; Marín, F.C.; González-Gutiérrez, L.V. Coupled Adsorption and Electrochemical Process for Copper Recovery from Wastewater Using Grapefruit Peel. J. Environ. Eng. 2020, 146, 04020100. [Google Scholar] [CrossRef]
- Hoyos, L.E.S.-D.; Sánchez-Mendieta, V.; Camacho-López, M.A.; Trujillo-Reyes, J.; Vilchis-Nestor, A.R. Plasmonic and fluorescent sensors of metal ions in water based on biogenic gold nanoparticles. Arab. J. Chem. 2020, 13, 1975–1985. [Google Scholar] [CrossRef]
- Vandarkuzhali, S.A.A.; Natarajan, S.; Jeyabalan, S.; Sivaraman, G.; Singaravadivel, S.; Muthusubramanian, S.; Viswanathan, B. Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega 2018, 3, 12584–12592. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, M.; Rajagopal, D.; Parthasarathy, S.; Raja, S.; Huang, S.-T.; Kumar, A.S. In Situ Immobilized Sesamol-Quinone/Carbon Nanoblack-Based Electrochemical Redox Platform for Efficient Bioelectrocatalytic and Immunosensor Applications. ACS Omega 2018, 3, 10823–10835. [Google Scholar] [CrossRef]
- Gandhi, M.; Rajagopal, D.; Kumar, A.S. Facile Electrochemical Demethylation of 2-Methoxyphenol to Surface-Confined Catechol on the MWCNT and Its Efficient Electrocatalytic Hydrazine Oxidation and Sensing Applications. ACS Omega 2020, 5, 16208–16219. [Google Scholar] [CrossRef]
- Gandhi, M.; Rajagopal, D.; Kumar, A.S. Molecularly wiring of Cytochrome c with carboxylic acid functionalized hydroquinone on MWCNT surface and its bioelectrocatalytic reduction of H2O2 relevance to biomimetic electron-transport and redox signalling. Electrochim. Acta 2021, 368, 137596. [Google Scholar] [CrossRef]
- Lin, T.-E.; Lesch, A.; Li, C.-L.; Girault, H.H. Mapping the antioxidant activity of apple peels with soft probe scanning electrochemical microscopy. J. Electroanal. Chem. 2017, 786, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Merzlyak, M.N.; Solovchenko, A.E.; Smagin, A.I.; Gitelson, A.A. Apple flavonols during fruit adaptation to solar radiation: Spectral features and technique for non-destructive assessment. J. Plant Physiol. 2005, 162, 151–160. [Google Scholar] [CrossRef]
- Betemps, D.L.; Fachinello, J.C.; Galarça, S.P.; Portela, N.M.; Remorini, D.; Massai, R.; Agati, G. Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor. J. Sci. Food Agric. 2012, 92, 1855–1864. [Google Scholar] [CrossRef]
- Hagen, S.F.; Solhaug, K.A.; Bengtsson, G.B.; Borge, G.I.A.; Bilger, W. Chlorophyll fluorescence as a tool for non-destructive estimation of anthocyanins and total flavonoids in apples. Postharvest. Biol. Technol. 2006, 41, 156–163. [Google Scholar] [CrossRef]
- Glaser, B.; Parr, M.; Braun, C.; Kopolo, G. Biochar is carbon negative. Nat. Geosci. 2009, 2, 2. [Google Scholar] [CrossRef]
- Shah, J.; Lopez-Mercado, J.; Carreon, M.G.; Lopez-Miranda, A.; Carreon, M.L. Plasma Synthesis of Graphene from Mango Peel. ACS Omega 2018, 3, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Sharma, G.; Sharma, A.; Bhardwaj, K.; Preeti, K.; Singh, K.; Kumar, A.; Pal, V.K.; Choi, E.H.; Singh, S.P.; et al. Synthesis of silica and carbon-based nanomaterials from rice husk ash by ambient fiery and furnace sweltering using a chemical method. Appl. Surf. Sci. Adv. 2022, 8, 100225. [Google Scholar] [CrossRef]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Sridhar, K.; Nayak, P.K.; Inbaraj, B.S. Biogeneration of Valuable Nanomaterials from Agro-Wastes: A Comprehensive Review. Agronomy 2023, 13, 561. [Google Scholar] [CrossRef]
- Nanaji, K.; Upadhyayula, V.; Rao, T.N.; Anandan, S. Robust, Environmentally Benign Synthesis of Nanoporous Graphene Sheets from Biowaste for Ultrafast Supercapacitor Application. ACS Sustain. Chem. Eng. 2018, 7, 2516–2529. [Google Scholar] [CrossRef]
- Chung, D.Y.; Son, Y.J.; Yoo, J.M.; Kang, J.S.; Ahn, C.-Y.; Park, S.; Sung, Y.-E. Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications. ACS Appl. Mater. Interfaces 2017, 9, 41303–41313. [Google Scholar] [CrossRef]
- Nagaraju, G.; Lim, J.H.; Cha, S.M.; Yu, J.S. Three-dimensional activated porous carbon with meso/macropore structures derived from fallen pine cone flowers: A low-cost counter electrode material in dye-sensitized solar cells. J. Alloy. Compd. 2017, 693, 1297–1304. [Google Scholar] [CrossRef]
- Madhu, R.; Veeramani, V.; Chen, S.-M.; Palanisamy, J.; Vilian, A.T.E. Pumpkin stem-derived activated carbons as counter electrodes for dye-sensitized solar cells. RSC Adv. 2014, 4, 63917–63921. [Google Scholar] [CrossRef]
- Wang, X.; Yun, S.; Fang, W.; Zhang, C.; Liang, X.; Lei, Z.; Liu, Z.-H. Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 11397–11407. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Wen, X.; Chen, X.; Wen, Y.; Shi, X.; Mijowska, E. High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Sci. Rep. 2020, 10, 3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.J.; Ling, P.H.; Yu, M.X.; Wang, X.T.; Zhang, X.Y.; Zheng, M.D. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 2013, 105, 635–641. [Google Scholar] [CrossRef]
- Ehsani, A.; Parsimehr, H. Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview. Chem. Rec. 2020, 20, 820–830. [Google Scholar] [CrossRef]
- Taer, E.; Taslim, R.; Aini, Z.; Hartati, S.D.; Mustika, W.S. Activated carbon electrode from banana-peel waste for supercapacitor applications. In Proceedings of the 6th International Conference on Theoretical and Applied Physics (The 6th ICTAP), Makassar, Indonesia, 19–21 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Karnan, M.; Subramani, K.; Srividhya, P.; Sathish, M. Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochim. Acta 2017, 228, 586–596. [Google Scholar] [CrossRef]
- Taer, E.; Taslim, R.; Putri, A.; Apriwandi, A.; Agustino, A. Activated Carbon Electrode Made from Coconut Husk Waste For Supercapacitor Application. Int. J. Electrochem. Sci. 2018, 13, 12072–12084. [Google Scholar] [CrossRef]
- Maldonado-Bandala, E.E.; Jiménez-Quero, V.; Olguin-Coca, F.J.; Lizarraga, M.L.G.; Baltazar-Zamora, M.A.; Ortiz, A.C.; Almeraya, C.F.; Zambrano, R.P. Electrochemical characterization of modified concretes with sugar cane bagasse ash. Int. J. Electrochem. Sci. 2011, 6, 4915–4926. [Google Scholar] [CrossRef]
- Nor, N.S.M.; Deraman, M.; Omar, R.; Taer, E.; Awitdrus; Farma, R.; Basri, N.H.; Dolah, B.N.M. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches. In Proceedings of the Conference: Nanoscience and Nanotechnology Symposium 2013; Surabaya, Indonesia, 23–25 October 2013, Farma, R., Basri, N.H., Eds.; 2013; Volume 1586, pp. 68–73. [Google Scholar] [CrossRef]
- Ospino-Orozco, J.; Parra-Barraza, J.; Cervera-Cahuana, S.; Coral-Escobar, E.E.; Vargas-Ceballos, O. Activated carbon from cassava peel: A promising electrode material for supercapacitors. Rev. Fac. Ing. Univ. Antioq. 2020, 102, 88–95. [Google Scholar] [CrossRef]
- Elaiyappillai, E.; Srinivasan, R.; Johnbosco, Y.; Devakumar, P.; Murugesan, K.; Kesavan, K.; Johnson, P.M. Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Appl. Surf. Sci. 2019, 486, 527–538. [Google Scholar] [CrossRef]
- Song, X.-Y.; Pan, G.-X.; Bai, Y.-W.; Liang, F.; Xing, J.-J.; Gao, J.; Shi, F.-N. Preparation and electrochemical properties of biochar from pyrolysis of pomelo peel via different methods. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 453–458. [Google Scholar] [CrossRef]
- Xiao, K.; Ding, L.-X.; Chen, H.; Wang, S.; Lu, X.; Wang, H. Nitrogen-doped porous carbon derived from residuary shaddock peel: A promising and sustainable anode for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2015, 4, 372–378. [Google Scholar] [CrossRef]
- Ramalingam, R.J.; Sivachidambaram, M.; Vijaya, J.J.; Al-Lohedan, H.A.; Muthumareeswaran, M. Synthesis of porous activated carbon powder formation from fruit peel and cow dung waste for modified electrode fabrication and application. Biomass Bioenergy 2020, 142, 105800. [Google Scholar] [CrossRef]
- Liu, F.; Yu, R.; Ji, X.; Guo, M. Hydrothermal carbonization of holocellulose into hydrochar: Structural, chemical characteristics, and combustion behavior. Bioresour. Technol. 2018, 263, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shen, D.; Wu, S.; Zhang, H.; Xiao, R. Effect of temperature on structure evolution in char from hydrothermal degradation of lignin. J. Anal. Appl. Pyrolysis 2014, 106, 118–124. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, L.; Sun, K.; Jiang, J.; Zhang, X. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J. Solid State Electrochem. 2012, 16, 2179–2186. [Google Scholar] [CrossRef]
- Zequine, C.; Ranaweera, C.K.; Wang, Z.; Singh, S.; Tripathi, P.; Srivastava, O.N.; Gupta, B.K.; Ramasamy, K.; Kahol, P.K.; Dvornic, P.R.; et al. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications. Sci. Rep. 2016, 6, 31704. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Liu, Q.; Zhao, Y.; Chen, T.; Wang, J.; Gui, L.; Lu, C. Recent Progress and Future Directions of Biomass-Derived Hier-archical Porous Carbon: Designing, Preparation, and Supercapacitor Applications. Energy Fuels 2023, 37, 3523–3554. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, W.; Quan, H.; Huang, Z.; Chen, D.; Guo, L. Nitrogen-Doped Foam-like Carbon Plate Consisting of Carbon Tubes as High-Performance Electrode Materials for Supercapacitors. Chemelectrochem 2016, 3, 814–821. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Xiao, D.; Wang, X. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl. Surf. Sci. 2017, 416, 918–924. [Google Scholar] [CrossRef]
- Sun, F.; Wang, L.; Peng, Y.; Gao, J.; Pi, X.; Qu, Z.; Zhao, G.; Qin, Y. Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials. Appl. Surf. Sci. 2018, 436, 486–494. [Google Scholar] [CrossRef]
- Yang, S.; Wang, S.; Liu, X.; Li, L. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon 2019, 147, 540–549. [Google Scholar] [CrossRef]
- Qian, W.; Sun, F.; Xu, Y.; Qiu, L.; Liu, C.; Wang, S.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2013, 7, 379–386. [Google Scholar] [CrossRef]
- Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Habia, M.I.; Manallah, A.; Ayadi, K. Plasmonic biosensor for the study of blood diseases by analysis of hemoglobin concentration. Opt. Quantum Electron. 2023, 55, 234. [Google Scholar] [CrossRef]
- Uniyal, A.; Srivastava, G.; Pal, A.; Taya, S.; Muduli, A. Recent Advances in Optical Biosensors for Sensing Applications: A Review. Plasmonics 2023, 18, 735–750. [Google Scholar] [CrossRef]
- Romero-Cano, L.A.; Zárate-Guzmán, A.I.; Carrasco-Marín, F.; González-Gutiérrez, L.V. Electrochemical detection of copper in water using carbon paste electrodes prepared from bio-template (grapefruit peels) functionalized with carboxyl groups. J. Electroanal. Chem. 2019, 837, 22–29. [Google Scholar] [CrossRef]
- Gandhi, M.; Rajagopal, D.; Kumar, A.S. In-situ electro-organic conversion of lignocellulosic-biomass product-syringaldehyde to a MWCNT surface-confined hydroquinone electrocatalyst for biofuel cell and sensing of ascorbic acid applications. Appl. Surf. Sci. 2021, 562, 150158. [Google Scholar] [CrossRef]
- Etim, A.O.; Betiku, E.; Ajala, S.O.; Olaniyi, P.J.; Ojumu, T.V. Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm. Sustainability 2018, 10, 707. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.; Dong, D.; Liao, T.; Li, Y.; Zheng, L.; Zhang, D.; Zhao, C. Detection of Pesticide (Chlorpyrifos) Residues on Fruit Peels Through Spectra of Volatiles by FTIR. Food Anal. Methods 2014, 8, 1341–1346. [Google Scholar] [CrossRef]
S. No. | Counter Electrode Derived from BioSource | JSC | VOC | FF | PCE % | Ref |
---|---|---|---|---|---|---|
1. | Aloe Peel | 14.15 | 720 | 0.68 | 6.92 | [12] |
2. | Coffee Waste | 15.09 | 760 | 0.72 | 8.32 | [49] |
3. | Pine Cone Flowers | 13.51 | 710 | 0.51 | 4.98 | [50] |
4. | Pumpkin Stem | 3.84 | 611 | 0.47 | 2.79 | [51] |
5. | Sunflower Stalk | 15.20 | 670 | 0.64 | 6.56 | [52] |
Fruit Peel | Specific Surface Area (m2 g−1) | Potential Window | Specific Capacitance (F g−1) | Current Density (A g−1) | Stability Cycles (number) | Cycle Deficiency% | Ref |
---|---|---|---|---|---|---|---|
Pomelo | 999 | −1 V to 0 V | 338 | 1 | 5000 | 4 | [71] |
38.44 | −1 V to 0 V | 222.6 | 0.5 | 5000 | 3 | [72] | |
2167 | 0 V to 3 V | 1115 | 0.2 | 2000 | 9 | [73] | |
830 | −1 V to 0 V | 321.7 | 1 | 6000 | 6.6 | [64] | |
1265 | −0.1 V to 0.9 V | 550 | 0.2 | 10000 | 6.3 | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandhi, M. Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications. Electrochem 2023, 4, 411-423. https://doi.org/10.3390/electrochem4030026
Gandhi M. Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications. Electrochem. 2023; 4(3):411-423. https://doi.org/10.3390/electrochem4030026
Chicago/Turabian StyleGandhi, Mansi. 2023. "Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications" Electrochem 4, no. 3: 411-423. https://doi.org/10.3390/electrochem4030026
APA StyleGandhi, M. (2023). Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications. Electrochem, 4(3), 411-423. https://doi.org/10.3390/electrochem4030026