Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of Vavadium (3.5+) Electrolyte from VOSO4 as a Precursor
2.3. Preparation of Vanadium (3.5+) from V2O5 as a Precursor
2.4. Preparation of Vanadium (3.5+) with VOSO4 and V2O5 as a Precursor by Hydrothermal Reduction Reaction (HRR)
2.5. Electrochemical Analyses
2.6. VRFB Cell Test
3. Result and Discussion
3.1. UV Characteristics and Concentration Analysis of Vanadium Electrolyte
3.2. Electrochemical Properties of the Vanadium (3.5+) Electrolytes Manufactured by HRR
3.3. Performance of VRFBs Using Vanadium (3.5+) Electrolytes by Electricity Reduction and HRR
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frost & Sullivan. Emerging Technologies in the Energy Storage Market. Available online: www.Frost.com (accessed on 1 May 2016).
- IEA (International Energy Agency). Energy Storage Technology Roadmap. Available online: www.iea.org (accessed on 12 June 2024).
- Chen, R.; Kim, S.; Chang, Z. Redox flow Batteries: Fundamentals and Applications. In Redox–Principles and Advanced Applications; Khalid, M., Ed.; Intech: London, UK, 2017; pp. 103–118. [Google Scholar] [CrossRef]
- Ye, R.; Henkensmeier, D.; Yoon, S.J.; Huang, Z.; Kim, D.K.; Chang, Z. Redox flow batteries for energy storage: A technology review. JEE Convers. Storage 2018, 15, 010801. [Google Scholar] [CrossRef]
- Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325–335. [Google Scholar] [CrossRef]
- Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H.-Y.; Yang, J.H.; Kim, H.-T. A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sustain. Energy Rev. 2017, 69, 263–274. [Google Scholar] [CrossRef]
- Li, L.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z.; Chen, B.; Zhang, J.; Xia, G.; Hu, J.; Graff, G.; et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 2011, 1, 394–400. [Google Scholar] [CrossRef]
- Heo, J.; Han, J.-Y.; Kim, S.; Yuk, S.; Choi, C.; Kim, R.; Lee, J.-H.; Klassen, A.; Ryi, S.-K.; Kim, H.-T. Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries. Nat. Commun. 2019, 10, 4412. [Google Scholar] [CrossRef] [PubMed]
- Skyllaskazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in flow battery research and development. J. Electrochem. Soc. 2011, 158, R55–R79. [Google Scholar] [CrossRef]
- Xi, J.; Wu, Z.; Teng, X.; Zhao, Y.; Chen, L.; Qiu, X. Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J. Mater. Chem. 2008, 18, 1232–1238. [Google Scholar] [CrossRef]
- Leung, P.; Li, X.; de León, C.P.; Berlouis, L.; Low, C.T.J.; Walsh, F.C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156. [Google Scholar] [CrossRef]
- Sum, E.; Rychcik, M.; Skyllas-Kazacos, M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 1985, 16, 85–95. [Google Scholar] [CrossRef]
- Singh, P.; Jonshagen, B. Zinc bromine battery for energy storage. J Power Sources 1991, 35, 405–410. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Li, L.; Graff, G.; Liu, J.; Zhang, H.; Yang, Z.; Hu, J.Z. Towards understanding the poor thermal stability of V5+ electrolyte solution in Vanadium Redox Flow Batteries. J. Power Sources 2011, 196, 3669–3672. [Google Scholar] [CrossRef]
- Rahman, F.; Skyllas-Kazacos, M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. J. Power Sources 1998, 72, 105–110. [Google Scholar] [CrossRef]
- Parasuraman, A.; Lim, T.M.; Menictas, C.; Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 2013, 101, 27–40. [Google Scholar] [CrossRef]
Electrolyte | ||||||||
---|---|---|---|---|---|---|---|---|
Ipa (mA) | Ipc (mA) | Ipa/Ipc | ΔE (V) | Ipa (mA) | Ipc (mA) | Ipa/Ipc | ΔE (V) | |
1.6 M VOSO4 +3 M H2SO4 (by conventional method) | 2.28 | 1.10 | 2.07 | 0.36 | 1.62 | 2.81 | 0.57 | 0.45 |
0.8 M V2O5 +3 M H2SO4 + CA (by HRR) | 2.00 | 0.85 | 2.35 | 0.20 | 1.60 | 1.90 | 0.84 | 0.39 |
Electrolyte | CE | EE | VE |
---|---|---|---|
1.6 M VOSO4 + 3 M H2SO4 + OA (by conventional method) | 94.82 | 77.48 | 81.69 |
1.6 M VOSO4 + 3 M H2SO4 + OA (by HRR) | 96.52 | 78.38 | 81.21 |
0.8 M V2O5 + 3 M H2SO4 + CA (by HRR) | 95.38 | 81.03 | 84.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, U.-I. Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery. Electrochem 2024, 5, 470-481. https://doi.org/10.3390/electrochem5040031
Kang U-I. Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery. Electrochem. 2024; 5(4):470-481. https://doi.org/10.3390/electrochem5040031
Chicago/Turabian StyleKang, Ung-Il. 2024. "Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery" Electrochem 5, no. 4: 470-481. https://doi.org/10.3390/electrochem5040031
APA StyleKang, U.-I. (2024). Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery. Electrochem, 5(4), 470-481. https://doi.org/10.3390/electrochem5040031