Previous Issue
Volume 5, June
 
 

Appl. Nano, Volume 5, Issue 3 (September 2024) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
8 pages, 2130 KiB  
Communication
Green Synthesis of Magnetic Fe–Co Bimetallic Nanoparticles and Their Photocatalytic Activity
by Amit Bhardwaj and Arun K. Singh
Appl. Nano 2024, 5(3), 108-115; https://doi.org/10.3390/applnano5030009 - 30 Jul 2024
Viewed by 329
Abstract
The leaves of the Murraya koenigii aromatic plant contain various specific phytochemicals, including lutein, β-carotene, vitamin C, nicotinic acids, and other polyphenols, which act as reducing agents to produce metallic nanoparticles from their respective precursors. In this study, we report the green [...] Read more.
The leaves of the Murraya koenigii aromatic plant contain various specific phytochemicals, including lutein, β-carotene, vitamin C, nicotinic acids, and other polyphenols, which act as reducing agents to produce metallic nanoparticles from their respective precursors. In this study, we report the green synthesis of iron–cobalt bimetallic nanoparticles (Fe–Co BMNPs) using natural resources of reducing and capping agents from aqueous extract of Murraya koenigii leaves. The synthesized Fe–Co BMNPs were characterized using SEM, EDS, BET surface area, TGA, XRD, TEM, and VSM techniques, revealing their crystalline structure with a surface area of 83.22 m2 g−1 and particle sizes <50 nm. Furthermore, the photocatalytic ability of the synthesized Fe–Co BMNPs was examined concerning methylene blue dye (MBD) aqueous solution. The synthesized Fe–Co BMNPs exhibited promising potential for dye removal from aqueous solution in acidic and basic medium (>97% of 10 mg L−1). Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop