A Comparison of the Frequency of Trisomy 13, 18, and 21 Using Non-Invasive Prenatal Testing According to Diminished vs. Normal Egg Reserve and Age
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin. Obstet. Gynecol. 2020, 136, e48–e69. [Google Scholar] [CrossRef]
- Srebniak, M.I.; Joosten, M.; Knapen, M.F.C.M.; Arends, L.R.; Polak, M.; van Veen, S.; Go, A.T.J.I.; Van Opstal, D. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 51, 445–452. [Google Scholar] [CrossRef]
- Hook, E.B. Rates of chromosome abnormalities at different maternal ages. Obstet. Gynecol. 1981, 58, 282–285. [Google Scholar]
- Snijders, R.J.; Sebire, N.J.; Nicolaides, K.H. Maternal age and gestational age-specific risk for chromosomal defects. Fetal. Diagn. Ther. 1995, 10, 356–367. [Google Scholar] [CrossRef]
- Forabosco, A.; Percesepe, A.; Santucci, S. Incidence of non-age-dependent chromosomal abnormalities: A population-based study on 88965 amniocenteses. Eur. J. Hum. Genet. 2009, 17, 897–903. [Google Scholar] [CrossRef]
- Crider, K.S.; Olney, R.S.; Cragan, J.D. Trisomies 13 and 18: Population prevalences, characteristics, and prenatal diagnosis, metropolitan Atlanta, 1994–2003. Am. J. Med. Genet. A 2008, 146, 820–826. [Google Scholar] [CrossRef]
- Irving, C.; Richmond, S.; Wren, C.; Longster, C.; Embleton, N.D. Changes in fetal prevalence and outcome for trisomies 13 and 18: A population-based study over 23 years. J. Matern. Fetal. Neonatal. Med. 2011, 24, 137–141. [Google Scholar] [CrossRef]
- Benn, P.; Cuckle, H.; Pergament, E. Non-invasive prenatal testing for aneuploidy: Current status and future prospects. Ultrasound Obstet. Gynecol. 2013, 42, 15–33. [Google Scholar] [CrossRef]
- Carbone, L.; Cariati, F.; Sarno, L.; Conforti, A.; Bagnulo, F.; Strina, I.; Pastore, L.; Maruotti, G.M.; Alviggi, C. Non-invasive prenatal testing: Current perspectives and future challenges. Genes 2020, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Allyse, M.; Minear, M.A.; Berson, E.; Sridhar, S.; Rote, M.; Hung, A.; Chandrasekharan, S. Non-invasive prenatal testing: A review of international implementation and challenges. Int. J. Womens Health 2015, 16, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulou, I.; Tsoplou, P.; Mavrommatis, K.; Kroupis, C. Non-invasive prenatal testing (NIPT): Limitations on the way to become diagnosis. Diagnosis 2015, 2, 141–158. [Google Scholar] [CrossRef]
- Zaninović, L.; Bašković, M.; Ježek, D.; Katušić Bojanac, A. Validity and utility of non-invasive prenatal testing for copy number variations and microdeletions: A systematic review. J. Clin. Med. 2022, 11, 3350. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, N.D.; Marsh, E.E. Ovarian reserve testing: A review of the options, their applications, and their limitations. Clin. Obstet. Gynecol. 2019, 62, 228–237. [Google Scholar] [CrossRef]
- Grande, M.; Borobio, V.; Bennasar, M.; Stergiotou, I.; Mercadé, I.; Masoller, N.; Peñarrubia, J.; Borrell, A. Role of ovarian reserve markers, antimüllerian hormone and antral follicle count, as aneuploidy markers in ongoing pregnancies and miscarriages. Fertil. Steril. 2015, 103, 1221–1227.e2. [Google Scholar] [CrossRef] [PubMed]
- Check, J.H. A follicle stimulating hormone (FSH) receptor up-regulation technique as a method for follicular recruitment for in vitro fertilization-embryo transfer in women with diminished oocyte review. In Advances in Medicine and Biology; Berhardt, L.V., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022; Volume 195, Chapter 4; pp. 119–137. [Google Scholar]
- Check, J.H. Maximizing correction of infertility with moderate to marked diminished egg reserve in natural cycles by up-regulating follicle stimulating hormone receptors. Gynecol. Reprod. Health 2022, 6, 1–7. [Google Scholar] [CrossRef]
- Weenen, C.; Laven, J.S.; Von Bergh, A.R.; Cranfield, M.; Groome, N.P.; Visser, J.A.; Kramer, P.; Fauser, B.C.; Themmen, A.P. Anti-mullerian hormone expression pattern in the human ovary: Potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 2004, 10, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Durlinger, A.L.; Visser, J.A.; Themmen, A.P. Regulation of ovarian function: The role of anti-mullerian hormone. Reproduction 2002, 124, 601–609. [Google Scholar] [CrossRef]
- Broekmans, F.J.; Kwee, J.; Hendriks, D.J.; Mol, B.W.; Lambalk, C.B. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum. Reprod. Update 2006, 12, 685–718. [Google Scholar] [CrossRef]
- La Marca, A.; Sighinolfi, G.; Radi, D.; Argento, C.; Baraldi, E.; Artenisio, A.C.; Stabile, G.; Volpe, A. Anti-mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum. Reprod. Update 2010, 16, 113–130. [Google Scholar] [CrossRef]
- Tal, R.; Seifer, D.B. Ovarian reserve testing: A user’s guide. Am. J. Obstet. Gynecol. 2017, 217, 129–140. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Testing and interpreting measures of ovarian reserve: A committee opinion. Fertil. Steril. 2020, 114, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Su, Z.; Wang, L.; Yuan, P.; Li, R.; Ouyang, N.; Zheng, L.; Wang, W. Predictive value of age-specific FSH levels for IVF-ET outcome in women with normal ovarian function. Reprod. Biol. Endocrinol. 2015, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Toner, J.P.; Seifer, D.B. Why we may abandon basal follicle-stimulating hormone testing: A sea change in determining ovarian reserve using antimüllerian hormone. Fertil. Steril. 2013, 99, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, H.; Thum, M.Y. An elevated basal FSH reflects a quantitative rather than qualitative decline of the ovarian reserve. Hum. Reprod. 2004, 19, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Li, J.; Li, X.; Liu, H.; Liang, X. Egg quality and pregnancy outcome in young infertile women with diminished ovarian reserve. Med. Sci. Monit. 2018, 24, 7279–7284. [Google Scholar] [CrossRef]
- Bentov, Y.; Yavorska, T.; Esfandiari, N.; Jurisicova, A.; Casper, R.F. The contribution of mitochondrial function to reproductive aging. J. Assist. Reprod. Genet. 2011, 28, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Keefe, D.L. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod. Biomed. Online 2008, 16, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Massie, J.; Burney, R.; Milki, A.; Westphal, L.; Lathi, R. Basal follicle-stimulating hormone as a predictor of fetal aneuploidy. Fertil. Steril. 2008, 90, 2351–2355. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Hamatani, T.; Kamijo, S.; Iwai, M.; Kobanawa, M.; Ogawa, S.; Miyado, K.; Tanaka, M. Impact of oxidative stress on age-associated decline in oocyte developmental competence. Front. Endocrinol. 2019, 22, 811. [Google Scholar] [CrossRef]
- Kirillova, A.; Smitz, J.E.; Sukhikh, G.T.; Mazunin, I. The role of mitochondria in oocyte maturation. Cells 2021, 10, 2484. [Google Scholar] [CrossRef]
- Podolak, A.; Liss, J.; Kiewisz, J.; Pukszta, S.; Cybulska, C.; Rychlowski, M.; Lukaszuk, A.; Jakiel, G.; Lukaszuk, K. Mitochondrial DNA copy number in cleavage stage human embryos-impact on fertility outcome. Curr. Issues Mol. Biol. 2022, 44, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.E.; Spandorfer, S.; Fasouliotis, S.J.; Kashyap, S.; Rosenwaks, Z. Taking a basal follicle-stimulating hormone history is essential before initiating in vitro fertilization. Fertil. Steril. 2005, 83, 37–41. [Google Scholar] [CrossRef]
- Check, J.H.; Wilson, C. The younger the patients the less adverse effect of diminished oocyte reserve on outcome following in vitro fertilization-embryo transfer as long as the proper ovarian stimulation protocol is used. J. Reprod. Contracep 2013, 24, 221–227. [Google Scholar]
- Check, J.H.; Nowroozi, K.; Chase, J.S.; Nazari, A.; Shapse, P.; Vaze, M. Ovulation induction and pregnancies in 100 consecutive women with hypergonadotropic amenorrhea. Fertil. Steril. 1990, 53, 811–816. [Google Scholar] [CrossRef]
- Check, J.H.; Check, M.L.; Katsoff, D. Three pregnancies despite elevated serum FSH and advanced age: Case report. Hum. Reprod. 2000, 15, 1709–1712. [Google Scholar] [CrossRef]
- Toner, J.P. Age = egg quality, FSH level = egg quantity. Fertil. Steril. 2003, 79, 491. [Google Scholar] [CrossRef]
- Baart, E.B.; Martini, E.; Eijkemans, M.J.; Van Opstal, D.; Beckers, N.G.; Verhoeff, A.; Macklon, N.S.; Fauser, B.C. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: A randomized controlled trial. Hum. Reprod. 2007, 22, 980–988. [Google Scholar] [CrossRef]
- Revelli, A.; Chiadò, A.; Dalmasso, P.; Stabile, V.; Evangelista, F.; Basso, G.; Benedetto, C. ”Mild” vs. “long” protocol for controlled ovarian hyperstimulation in patients with expected poor ovarian responsiveness undergoing in vitro fertilization (IVF): A large prospective randomized trial. J. Assist. Reprod. Genet. 2014, 31, 809–815. [Google Scholar] [CrossRef]
- Youssef, M.A.; Van Wely, M.; Al-Inany, H.; Madani, T.; Jahangiri, N.; Khodabakhshi, S.; Alhalabi, M.; Akhondi, M.; Ansaripour, S.; Tokhmechy, R.; et al. A mild ovarian stimulation strategy in women with poor ovarian reserve undergoing IVF; a multicenter randomized non-inferiority trial. Hum. Reprod. 2017, 32, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Klinkert, E.R.; Broekmans, F.J.; Looman, C.W.; Habbema, J.D.; te Velde, E.R. Expected poor responders on the basis of an antral follicle count do not benefit from a higher starting dose of gonadotrophins in IVF treatment: A randomized controlled trial. Hum. Reprod. 2005, 20, 611–615. [Google Scholar] [CrossRef]
- Thum, M.Y.; Abdalla, H.I.; Taylor, D. Relationship between women’s age and basal follicle-stimulating hormone levels with aneuploidy risk in in vitro fertilization treatment. Fertil. Steril. 2008, 90, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Fouks, Y.; Penzias, A.; Neuhausser, W.; Vaughan, D.; Sakkas, D. A diagnosis of diminished ovarian reserve does not impact embryo aneuploidy or live birth rates compared to patients with normal ovarian reserve. Fertil. Steril. 2022, 118, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.J.; Patounakis, G.; Juneau, C.R.; Neal, S.A.; Scott, R.T.; Seli, E. Diminished ovarian reserve and poor response to stimulation in patients <38 years old: A quantitative but not qualitative reduction in performance. Hum. Reprod. 2018, 33, 1489–1498. [Google Scholar] [PubMed]
- Jiang, X.; Yan, J.; Sheng, Y.; Sun, M.; Cui, L.; Chen, Z.J. Low anti-Müllerian hormone concentration is associated with increased risk of embryonic aneuploidy in women of advanced age. Reprod. Biomed. Online 2018, 37, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, A.; Mukherjee, T.; Grifo, J.A.; Noyes, N.; Krey, L.; Copperman, A.B. Elevated day 3 serum follicle stimulating hormone and/or estradiol may predict fetal aneuploidy. Fertil. Steril. 1999, 71, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Jaswa, E.G.; McCulloch, C.E.; Simbulan, R.; Cedars, M.I.; Rosen, M.P. Diminished ovarian reserve is associated with reduced euploid rates via preimplantation genetic testing for aneuploidy independently from age: Evidence for concomitant reduction in oocyte quality with quantity. Fertil. Steril. 2021, 115, 966–1073. [Google Scholar] [CrossRef] [PubMed]
- Shahine, L.K.; Marshall, L.; Lamb, J.D.; Hickok, L.R. Higher rates of aneuploidy in blastocysts and higher risk of no embryo transfer in recurrent pregnancy loss patients with diminished ovarian reserve undergoing in vitro fertilization. Fertil. Steril. 2016, 106, 1124–1128. [Google Scholar] [CrossRef]
- Check, J.H.; Cohen, R. Evidence that oocyte quality in younger women with diminished oocyte reserve is superior to those of women of advanced reproductive age. Med. Hypothesis 2010, 74, 164–167. [Google Scholar] [CrossRef]
- Miyagi, M.; Mekaru, K.; Nakamura, R.; Oishi, S.; Akamine, K.; Heshiki, C.; Aoki, Y. Live birth outcomes from IVF treatments in younger patients with low AMH. JBRA Assist. Reprod. 2021, 25, 417–421. [Google Scholar] [CrossRef]
Serum AMH (ng/mL) | Number of Patients | Trisomy 13, 18, or 21 |
---|---|---|
<0.1 | 5 | 0 |
0.1 to <0.3 | 10 | 0 |
0.3 to <0.5 | 11 | 0 |
0.5 to <0.7 | 8 | 1 * |
0.7 to <1.0 | 13 | 2 ** |
AMH Group | Age | No. Patients |
---|---|---|
<0.1 | <35 | 1 |
36–39 | 0 | |
40–42 | 2 | |
>43 | 2 | |
0.1 to <0.3 | 35 | 3 |
36–39 | 3 | |
40–42 | 4 | |
>43 | 0 | |
0.3 to <0.5 | 35 | 2 |
36–39 | 7 | |
40–42 | 2 | |
>43 | 0 | |
0.5 to <0.7 | 35 | 4 |
36–39 | 0 | |
40–42 | 4 | |
>43 | 0 | |
0.7 to <1.0 | 35 | 5 |
36–39 | 6 | |
40–42 | 2 | |
>43 | 0 |
Age | Number of Patients |
---|---|
≤35 | 98 |
36–39 | 44 |
40–42 | 7 |
≥43 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, B.; Weitz, N.; Check, J.H.; Wilson, C.; Diantonio, A.; O’Neil, M. A Comparison of the Frequency of Trisomy 13, 18, and 21 Using Non-Invasive Prenatal Testing According to Diminished vs. Normal Egg Reserve and Age. Reprod. Med. 2024, 5, 81-89. https://doi.org/10.3390/reprodmed5020009
Neumann B, Weitz N, Check JH, Wilson C, Diantonio A, O’Neil M. A Comparison of the Frequency of Trisomy 13, 18, and 21 Using Non-Invasive Prenatal Testing According to Diminished vs. Normal Egg Reserve and Age. Reproductive Medicine. 2024; 5(2):81-89. https://doi.org/10.3390/reprodmed5020009
Chicago/Turabian StyleNeumann, Brooke, Nicole Weitz, Jerome H. Check, Carrie Wilson, Ann Diantonio, and Megan O’Neil. 2024. "A Comparison of the Frequency of Trisomy 13, 18, and 21 Using Non-Invasive Prenatal Testing According to Diminished vs. Normal Egg Reserve and Age" Reproductive Medicine 5, no. 2: 81-89. https://doi.org/10.3390/reprodmed5020009
APA StyleNeumann, B., Weitz, N., Check, J. H., Wilson, C., Diantonio, A., & O’Neil, M. (2024). A Comparison of the Frequency of Trisomy 13, 18, and 21 Using Non-Invasive Prenatal Testing According to Diminished vs. Normal Egg Reserve and Age. Reproductive Medicine, 5(2), 81-89. https://doi.org/10.3390/reprodmed5020009