A Numerical Simulation of Electrical Resistivity of Fiber-Reinforced Composites, Part 2: Flexible Bituminous Asphalt
Abstract
:1. Introduction
1.1. Durability of Bituminous Asphalt Composites
1.2. Fiber-Reinforced Asphalt
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tehrani, F.M.; Nelson, D. From Sustainability to Resilience: A Practical Guide to ENVISION®. In Objective Resilience, Book2: Objective Processes; Ettouney, M., Ed.; ASCE Press: Reston, VA, USA, 2022. [Google Scholar]
- Nelson, D.; Tehrani, F.M. Is resilience … sustainable? APWA Rep. 2018, 85, 53–56. [Google Scholar]
- Tehrani, F.M. Deploying and rating sustainable practices for resilient bridge infrastructure. In Proceedings of the Fifth International Conference on Bridges, Tehran, Iran, 17–18 December 2019; AUT: Tehran, Iran, 2019. Paper MS05. [Google Scholar]
- Tehrani, F.M.; Miller, N.M. Tire-derived Aggregate Cementitious Materials: A Review of Mechanical Properties. In Cement-Based Materials; Saleh, H., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Berry, E.; Shadravan, B.; Tehrani, F.M. A Sustainable Approach to Assess the Resilience of Perforated Wood Shear Walls. In Proceedings of the AEI Conference, Oklahoma City, OK, USA, 11–13 April 2017; ASCE: Reston, VA, USA; pp. 506–512. [Google Scholar]
- Tehrani, F.M. Sustainability and resilience through project management. In Proceedings of the 5th International Congress on Civil Engineering, Architecture & Urban Development, Tehran, Iran, 17–18 December 2017; ICSAU: Tehran, Iran, 2017. AB-01440-B. [Google Scholar]
- Tehrani, F.M.; Dadkhah, M. A Case Study on the Analysis of Energy and Emissions for Sustainability Rating. Int. J. Clim. Chang. Impacts Responses 2018, 1, 13–23. [Google Scholar] [CrossRef]
- Tehrani, F.M.; Alexandrou, A.; Mahoney, M.; Adhikari, D.; Raymond, M. Energy inputs and carbon dioxide emissions from construction equipment during construction of a golf course. Int. J. Eng. Res. Innov. 2014, 6, 78–86. [Google Scholar]
- Feng, D.; Yi, J.; Wang, D.; Chen, L. Impact of salt and freeze–Thaw cycles on performance of asphalt mixtures in coastal frozen region of China. Cold Reg. Sci. Technol. 2010, 62, 34–41. [Google Scholar] [CrossRef]
- Guo, M.; Tan, Y.; Wang, L.; Hou, Y. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate. Front. Struct. Civ. Eng. 2018, 12, 248–259. [Google Scholar] [CrossRef]
- Tehrani, F.M. Noise abatement of rubberized hot mix asphalt: A brief review. Int. J. Pavement Res. Technol. 2015, 8, 58. [Google Scholar]
- Ehsani, R.; Miri, A.; Tehrani, F.M. A Quantitative Investigation of the Durability of Asphalt Pavement Materials Using Experimental Freeze-and-Thaw Weathering Data. In Proceedings of the ASCE International Airfield & Highway Pavements Conference: Pavement Design, Construction, and Condition Evaluation, Austin, TX, USA, 8–10 June 2021; Ozer, H., Rushing, J.F., Leng, Z., Eds.; ASCE: Reston, VA, USA, 2021; pp. 169–177. [Google Scholar]
- Amini, B.; Tehrani, S.S. Simultaneous effects of salted water and water flow on asphalt concrete pavement deterioration under freeze–thaw cycles. Int. J. Pavement Eng. 2014, 15, 383–391. [Google Scholar] [CrossRef]
- Gong, Y.; Bi, H.; Liang, C.; Wang, S. Microstructure Analysis of Modified Asphalt Mixtures under Freeze-Thaw Cycles Based on CT Scanning Technology. Appl. Sci. 2018, 8, 2191. [Google Scholar] [CrossRef] [Green Version]
- Lovqvist, L. Towards Frost Damage Prediction in Asphaltic Pavements. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019. [Google Scholar]
- Hassan, Y.; Abd El Halim, A.O.; Razaqpur, A.G.; Bekheet, W.; Farha, M.H. Effects of runway deicers on pavement materials and mixes: Comparison with road salt. J. Transp. Eng. 2002, 128, 385–391. [Google Scholar] [CrossRef]
- Tehrani, F.M. Performance of Steel Fiber Reinforced Concrete in Beam-Column Connections. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2008. [Google Scholar]
- Sassani, A.; Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Arabzadeh, A.; Taylor, P. Factorial Study on Electrically Conductive Concrete Mix Design for Heated Pavement Systems. In Proceedings of the Transportation Research Board 96th Annual Meeting, Washington, DC, USA, 8–12 January 2017. [Google Scholar]
- Sassani, A.; Arabzadeh, A.; Ceylan, H.; Kim, S.; Sadati, S.S.; Gopalakrishnan, K.; Abdualla, H. Carbon fiber-based electrically conductive concrete for salt-free deicing of pavements. J. Clean. Prod. 2018, 203, 799–809. [Google Scholar] [CrossRef]
- Sassani, A.; Ceylan, H.; Kim, S.; Arabzadeh, A.; Abdualla, H.; Taylor, P.C.; Gopalakrishnan, K. Designing and Proportioning Electrically Conductive Concrete for Des Moines International Airport Heated Pavement System. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Yehia, S.A.A. Conductive Concrete Overlay for Bridge Deck Deicing. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 1999. [Google Scholar]
- Tang, Z.Q.; Li, Z.Q.; Hou, Z.F.; Xu, D.L. Mechanism analyzing on deicing or snow melting of electrical conductive concrete. Concrete 2001, 141, 25–36. [Google Scholar]
- Abtahi, S.M.; Sheikhzadeh, M.; Hejazi, S.M. Fiber-reinforced asphalt-concrete–a review. Constr. Build. Mater. 2010, 24, 871–877. [Google Scholar] [CrossRef]
- García, A.; Norambuena-Contreras, J.; Partl, M.N. A parametric study on the influence of steel wool fibers in dense asphalt concrete. Mater. Struct. 2014, 47, 1559–1571. [Google Scholar] [CrossRef]
- Bressi, S.; Dumont, A.G.; Partl, M.N. An advanced methodology for the mix design optimization of hot mix asphalt. Mater. Des. 2016, 98, 174–185. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Liao, H.; Chen, X. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Constr. Build. Mater. 2016, 122, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Gulisano, F.; Crucho, J.; Gallego, J.; Picado-Santos, L. Microwave healing performance of asphalt mixture containing electric arc furnace (EAF) slag and graphene nanoplatelets (GNPs). Appl. Sci. 2020, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Schlangen, E.; Van De Ven, M. Induction healing of porous asphalt. Transp. Res. Rec. 2012, 2305, 95–101. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Notani, M.A.; Zadeh, A.K.; Nahvi, A.; Sassani, A.; Ceylan, H. Electrically conductive asphalt concrete: An alternative for automating the winter maintenance operations of transportation infrastructure. Compos. Part B Eng. 2019, 173, 106985. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Gonzalez, A.; Concha, J.L.; Gonzalez-Torre, I.; Schlangen, E. Effect of metallic waste addition on the electrical, thermophysical and microwave crack-healing properties of asphalt mixtures. Constr. Build. Mater. 2018, 187, 1039–1050. [Google Scholar] [CrossRef] [Green Version]
- Mc Daniel, R.S. Fiber Additives in Asphalt Mixtures. NCHRP Synthesis of Highway Practice 475; AASHTO: Washington, DC, USA, 2015. [Google Scholar]
- Hassan, H.F.; Al-Oraimi, S.; Taha, R. Evaluation of open-graded friction course mixtures containing cellulose fibers and styrene butadiene rubber polymer. J. Mater. Civ. Eng. 2005, 17, 416–422. [Google Scholar] [CrossRef]
- Wu, S.; Ye, Q.; Li, N. Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers. Constr. Build. Mater. 2008, 22, 2111–2115. [Google Scholar] [CrossRef]
- García, A.; Norambuena-Contreras, J.; Bueno, M.; Partl, M.N. Single and multiple healing of porous and dense asphalt concrete. J. Intell. Mater. Syst. Struct. 2015, 26, 425–433. [Google Scholar] [CrossRef]
- Putman, B.J.; Amirkhanian, S.N. Utilization of waste fibers in stone matrix asphalt mixtures. Resour. Conserv. Recycl. 2004, 42, 265–274. [Google Scholar] [CrossRef]
- Lee, S.J.; Rust, J.P.; Hamouda, H.; Kim, Y.R.; Borden, R.H. Fatigue cracking resistance of fiber-reinforced asphalt concrete. Text. Res. J. 2005, 75, 123–128. [Google Scholar] [CrossRef]
- Wu, S.; Pan, P.; Chen, M.; Zhang, Y. Analysis of characteristics of electrically conductive asphalt concrete prepared by multiplex conductive materials. J. Mater. Civ. Eng. 2013, 25, 871–879. [Google Scholar] [CrossRef]
- Liu, X.; Wu, S.; Ye, Q.; Qiu, J.; Li, B. Properties evaluation of asphalt-based composites with graphite and mine powders. Constr. Build. Mater. 2008, 22, 121–126. [Google Scholar] [CrossRef]
- Liu, X.; Wu, S. Study on the graphite and carbon fiber modified asphalt concrete. Constr. Build. Mater. 2011, 25, 1807–1811. [Google Scholar] [CrossRef]
- García, A.; Bueno, M.; Norambuena-Contreras, J.; Partl, M.N. Induction healing of dense asphalt concrete. Constr. Build. Mater. 2013, 49, 1–7. [Google Scholar] [CrossRef]
- Menozzi, A.; Garcia, A.; Partl, M.N.; Tebaldi, G.; Schuetz, P. Induction healing of fatigue damage in asphalt test samples. Constr. Build. Mater. 2015, 74, 162–168. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; García, Á.; van de Ven, M. Induction heating of electrically conductive porous asphalt concrete. Constr. Build. Mater. 2010, 24, 1207–1213. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Ceylan, H.; Kim, S.; Sassani, A.; Gopalakrishnan, K. Investigating the heat generation efficiency of electrically-conductive asphalt mastic using infrared thermal imaging. In Proceedings of the International Conference on Transportation and Development 2018: Airfield and Highway Pavements, Pittsburgh, PA, USA, 15–18 July 2018; pp. 206–214. [Google Scholar]
- Wu, S.-P.; Mo, L.-T.; Shui, Z.-H.; Xuan, D.-X.; Xue, Y.-J.; Yang, W.-F. An improvement in electrical properties of asphalt concrete. J. Wuhan Univ. Technol.-Mater. 2002, 17, 69–72. [Google Scholar]
- Maraveas, C.; Bartzanas, T. Sensors for Structural Health Monitoring of Agricultural Structures. Sensors 2021, 21, 314. [Google Scholar] [CrossRef] [PubMed]
- Gallego, J.; del Val, M.A.; Contreras, V.; Páez, A. Heating asphalt mixtures with microwaves to promote self-healing. Constr. Build. Mater. 2013, 42, 1–4. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Garcia, A. Self-healing of asphalt mixture by microwave and induction heating. Mater. Des. 2016, 106, 404–414. [Google Scholar] [CrossRef]
- González, A.; Norambuena-Contreras, J.; Storey, L.; Schlangen, E. Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating. Constr. Build. Mater. 2018, 159, 164–174. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Gonzalez-Torre, I. Influence of the microwave heating time on the self-healing properties of asphalt mixtures. Appl. Sci. 2017, 7, 1076. [Google Scholar] [CrossRef] [Green Version]
- García, Á.; Schlangen, E.; van de Ven, M.; Liu, Q. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Constr. Build. Mater. 2009, 23, 3175–3181. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Liu, Q.; Zeng, W.; Chen, Z.; Ye, Q.; Pan, P. Self-healing performance of asphalt mixtures through heating fibers or aggregate. Constr. Build. Mater. 2017, 150, 673–680. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Aguilar, V.G.; Gonzalez-Torre, I. Physical and mechanical behaviour of a fibre-reinforced rubber membrane with self-healing purposes via microwave heating. Constr. Build. Mater. 2015, 94, 45–56. [Google Scholar] [CrossRef]
- Xiang, H.; He, Z.; Chen, L.; Zhu, H.; Wang, Z. Key factors and optimal conditions for self-healing of bituminous binder. J. Mater. Civ. Eng. 2019, 31, 04019172. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, Y.; Zhong, S.; Zhu, J.; Zhao, H. Self-healing efficiency of ferrite-filled asphalt mixture after microwave irradiation. Constr. Build. Mater. 2017, 141, 12–22. [Google Scholar] [CrossRef]
- Zhu, X.; Ye, F.; Cai, Y.; Birgisson, B.; Lee, K. Self-healing properties of ferrite-filled open-graded friction course (OGFC) asphalt mixture after moisture damage. J. Clean. Prod. 2019, 232, 518–530. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Schlangen, E. Induction heating of asphalt mastic for crack control. Constr. Build. Mater. 2013, 41, 345–351. [Google Scholar] [CrossRef]
- Sun, D.; Sun, G.; Zhu, X.; Guarin, A.; Li, B.; Dai, Z.; Ling, J. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Adv. Colloid Interface Sci. 2018, 256, 65–93. [Google Scholar] [CrossRef]
- Kim, Y.R.; Little, D.N.; Benson, F.C. Chemical and mechanical evaluation on healing mechanism of asphalt concrete (with discussion). J. Assoc. Asph. Paving Technol. 1990, 59, 240–275. [Google Scholar]
- Sun, D.; Yu, F.; Li, L.; Lin, T.; Zhu, X.Y. Effect of chemical composition and structure of asphalt binders on self-healing. Constr. Build. Mater. 2017, 133, 495–501. [Google Scholar] [CrossRef]
- Ayar, P.; Moreno-Navarro, F.; Rubio-Gámez, M.C. The healing capability of asphalt pavements: A state of the art review. J. Clean. Prod. 2016, 113, 28–40. [Google Scholar] [CrossRef]
- García, A.; Norambuena-Contreras, J.; Bueno, M.; Partl, M.N. Influence of steel wool fibers on the mechanical, thermal, and healing properties of dense asphalt concrete. J. Test. Eval. 2014, 42, 1107–1118. [Google Scholar] [CrossRef]
- Huang, B.; Chen, X.; Shu, X. Effects of electrically conductive additives on laboratory-measured properties of asphalt mixtures. J. Mater. Civ. Eng. 2009, 21, 612–617. [Google Scholar] [CrossRef]
- Butler, S.L.; Sinha, G. Forward modeling of applied geophysics methods using COMSOL and comparison with analytical and laboratory analog models. Comput. Geosci. 2012, 42, 168–176. [Google Scholar] [CrossRef]
- Clement, R.; Bergeron, M.; Moreau, S. COMSOL: Multiphysics modelling for measurement device of electrical resistivity in laboratory test cell. In Proceedings of the 2011 COMSOL Conference, Stuttgart, Germany, 26–28 October 2011; COMSOL, Inc.: Burlington, MA, USA, 2011. [Google Scholar]
- COMSOL. COMSOL Multiphysics 5.5 (Build: 359); COMSOL, Inc.: Burlington, MA, USA, 2019. [Google Scholar]
- MATLAB. MATLAB and Statistics Toolbox Release 2021a; The MathWorks, Inc.: Natick, MA, USA, 2021. [Google Scholar]
- Gao, H.; Zhang, L.; Zhang, D.; Ji, T.; Song, J. Mechanical properties of fiber-reinforced asphalt concrete: Finite element simulation and experimental study. e-Polymers 2021, 21, 533–548. [Google Scholar] [CrossRef]
- Miri, A.; Ehsani, R.; Tehrani, F.M. A Numerical Simulation of the Electrical Resistivity of Concrete Pavements Containing Steel Fibers. In Proceedings of the ASCE International Airfield & Highway Pavements Conference: Pavement Design, Construction, and Condition Evaluation, Austin, TX, USA, 8–10 June 2021; Ozer, H., Rushing, J.F., Leng, Z., Eds.; ASCE: Reston, VA, USA, 2021; pp. 356–364. [Google Scholar]
Reference | Specimen | Fibers |
---|---|---|
Wang et al. (2016) [26] | (AC-13) with 13.2 mm nominal maximum aggregate, and Shell-70 binder, equivalent to PG 64-22 | Low-carbon steel, 0.10 ± 0.02 mm diameter, with a smooth face |
Huang et al. (2009) [62] | Gravel with a nominal maximum size of 12.5 mm, and PG 64-22 binder | Micron-scale Beki-Shield GR steel fiber, 8 micron diameter, and 6 mm long |
Norambuena et al. (2018) [30] | Coarse aggregate or gravel (S.G. 2.779, fine aggregate or sand (S.G. 2.721), and filler (S.G. 2.813), and 5.3% bitumen content by aggregates mass | Low-carbon steel wool fibers (S.G. 7.180) |
Norambuena et al. (2018) [30] | Coarse aggregate or gravel (S.G. 2.779, fine aggregate or sand (S.G. 2.721), and filler (S.G. 2.813), and 5.3% bitumen content by aggregates mass | Austenitic stainless steel shavings (S.G. 7.980) |
Liu et al. (2010) [42] | Quarry material (Bestone, Bremanger Quarry, Norway) between 2.0 and 22.4 mm (S.G. 2.770), crushed sand between 0.063 and 2 mm (S.G. 2688), and 70/100 bitumen (S.G. 1.032) | Steel fiber, 0.0296–0.1911 mm diameter |
Liu et al. (2010) [42] | Quarry material (Bestone, Bremanger Quarry, Norway) between 2.0 and 22.4 mm (S.G. 2.770), crushed sand between 0.063 and 2 mm (S.G. 2688), and 70/100 bitumen (S.G. 1.032) | Steel wool, 0.00635–0.00889 mm diameter |
Model | Length, mm | Diameter, mm |
---|---|---|
F1-1 | 60 | 0.3 |
F1-2 | 80 | 0.4 |
F2-1 | 60 | 0.6 |
F2-2 | 80 | 0.8 |
Model | Exponential Rate of Decline | Coefficient of Determination |
---|---|---|
F1-1 | −0.701 | 0.6932 |
F1-2 | −0.366 | 0.6919 |
F2-1 | −0.327 | 0.8771 |
F2-2 | −0.149 | 0.8226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehsani, R.; Miri, A.; Tehrani, F.M. A Numerical Simulation of Electrical Resistivity of Fiber-Reinforced Composites, Part 2: Flexible Bituminous Asphalt. Modelling 2022, 3, 177-188. https://doi.org/10.3390/modelling3010012
Ehsani R, Miri A, Tehrani FM. A Numerical Simulation of Electrical Resistivity of Fiber-Reinforced Composites, Part 2: Flexible Bituminous Asphalt. Modelling. 2022; 3(1):177-188. https://doi.org/10.3390/modelling3010012
Chicago/Turabian StyleEhsani, Rojina, Alireza Miri, and Fariborz M. Tehrani. 2022. "A Numerical Simulation of Electrical Resistivity of Fiber-Reinforced Composites, Part 2: Flexible Bituminous Asphalt" Modelling 3, no. 1: 177-188. https://doi.org/10.3390/modelling3010012
APA StyleEhsani, R., Miri, A., & Tehrani, F. M. (2022). A Numerical Simulation of Electrical Resistivity of Fiber-Reinforced Composites, Part 2: Flexible Bituminous Asphalt. Modelling, 3(1), 177-188. https://doi.org/10.3390/modelling3010012