On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis
Abstract
1. Introduction
2. Mathematical Models
2.1. Continuity Equation
2.2. Momentum Equations
2.3. Method of Characteristics (MOC)
2.4. Numerical Scheme
2.5. Micro-Genetic Algorithm
3. Analysis of Results
4. Procedure for the Characterization of the Viscoelastic Parameters
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Güney, M. Contribution à l’Étude du Phénomène de Coup de Bélier en Conduite Viscoélastique. Ph.D. Thesis, Université Claude Bernard—Lyon I, Villeurbanne, France, 1977. (In French). [Google Scholar]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley and Sons: Chichester, UK, 1980. [Google Scholar]
- Gally, M.; Güney, M.; Rieutord, E. An investigation of pressure transients in viscoelastic pipes. J. Fluids Eng. 1979, 101, 495–499. [Google Scholar] [CrossRef]
- Rieutord, E.; Blanchard, A. Écoulement non permanent en conduite viscoelastique—Coup de bélier. J. Hydraul. Res. 1979, 17, 217–229. (In French) [Google Scholar] [CrossRef]
- Franke, P.G.; Seyler, F. Computation of unsteady pipe flow with respect to visco-elastic material properties. J. Hydraul. Res. 1983, 21, 345–353. [Google Scholar] [CrossRef]
- Covas, D.; Stoianov, I.; Mano, J.F.; Ramos, H.; Graham, N.; Maksimovic, C. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I: Experimental analysis and creep haracterization. J. Hydraul. Res. 2004, 42, 516–530. [Google Scholar] [CrossRef]
- Covas, D.; Stoianov, I.; Mano, J.F.; Ramos, H.; Graham, N.; Maksimovic, C. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification. J. Hydraul. Res. 2005, 43, 56–70. [Google Scholar] [CrossRef]
- Meniconi, S.; Brunone, B.; Ferrante, M.; Massari, C. Transient hydrodynamics of in-line valves in viscoelastic pressurised pipes. Long period analysis. Exp. Fluids 2012, 53, 265–275. [Google Scholar] [CrossRef]
- Meniconi, S.; Brunone, B.; Ferrante, M. Water hammer pressure waves at cross-section changes in series in viscoelastic pipes. J. Fluids Struct. 2012, 33, 44–58. [Google Scholar] [CrossRef]
- Pezzinga, G.; Brunone, B.; Meniconi, S. Relevance of pipe period on Kelvin-Voigt viscoelastic parameters: 1D and 2D inverse transient analysis. J. Hydraul. Eng. 2016, 142, 04016063. [Google Scholar] [CrossRef]
- Ghilardi, P.; Paoletti, A. Additional viscoelastic pipes as pressure surges suppressors. In Proceedings of the 5th International Conference on Pressure Surges, Hannover, Germany, 22–24 September 1986; BHRA: Cranfield, UK, 1986; pp. 113–121. [Google Scholar]
- Pezzinga, G.; Scandura, P. Unsteady Flow in Installation with Polymeric Additional Pipe. J. Hydraul. Eng. 1995, 121, 802–811. [Google Scholar] [CrossRef]
- Pezzinga, G. Unsteady Flow in Hydraulic Networks with Polymeric Additional Pipe. J. Hydraul. Eng. 2002, 128, 238–244. [Google Scholar] [CrossRef]
- Pezzinga, G. Evaluation of time evolution of mechanical parameters of polymeric pipes by unsteady flow runs. J. Hydraul. Eng. 2014, 140, 04014057. [Google Scholar] [CrossRef]
- Triki, A. Water-hammer control in pressurized-pipe flow using a branched polymeric penstock. J. Pipeline Syst. Eng. Pract. 2017, 8, 04017024. [Google Scholar] [CrossRef]
- Duan, H.F.; Ghidaoui, M.; Lee, P.J.; Tung, Y.K. Unsteady friction and visco-elasticity in pipe fluid transients. J. Hydraul. Res. 2010, 48, 354–362. [Google Scholar] [CrossRef]
- Duan, H.F.; Ghidaoui, M.; Lee, P.J.; Tung, Y.K. Energy analysis of viscoelasticity effects in pipe fluid transients. J. Appl. Mech. 2010, 77, 044503. [Google Scholar] [CrossRef]
- Ferrante, M.; Capponi, C. Viscoelastic models for the simulation of transients in polymeric pipes. J. Hydraul. Res. 2017, 55, 599–612. [Google Scholar] [CrossRef]
- Soares, A.K.; Covas, D.I.; Reis, L.F. Analysis of PVC pipe-wall viscoelasticity during water hammer. J. Hydraul. Eng. 2008, 134, 1389–1394. [Google Scholar] [CrossRef]
- Keramat, A.; Haghighi, A. Straightforward transient-based approach for the creep function determination in viscoelastic pipes. J. Hydraul. Eng. 2014, 140, 04014058. [Google Scholar] [CrossRef]
- Weinerowska-Bords, K. Alternative approach to convolution term of viscoelasticity in equations of unsteady pipe flow. J. Fluids Eng. 2015, 137, 054501. [Google Scholar] [CrossRef]
- Yao, E.; Kember, G.; Hansen, D. Water hammer analysis and parameter estimation in polymer pipes with weak strain-rate feedback. J. Eng. Mech. 2016, 142, 04016052. [Google Scholar] [CrossRef]
- Bertaglia, G.; Ioriatti, M.; Valiani, A.; Dumbser, M.; Caleffi, V. Numerical methods for hydraulic transients in visco-elastic pipes. J. Fluids Struct. 2018, 81, 230–254. [Google Scholar] [CrossRef]
- Weinerowska-Bords, K. Viscoelastic Model of Waterhammer in Single Pipeline—Problems and Questions. Arch. Hydro-Eng. Environ. Mech. 2006, 53, 331–351. [Google Scholar]
- Krishnakumar, K. Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization. Proc. SPIE Intell. Control. Adapt. Syst. 1990, 1196, 289–296. [Google Scholar]
- Carroll, D.L. Genetic algorithms and optimizing chemical oxygen-iodine lasers. Dev. Theor. Appl. Mech. 1996, 18, 411–424. [Google Scholar]
- Sun, Q.; Zhang, Z.; Wu, Y.; Xu, Y.; Liang, H. Numerical analysis of transient pressure damping in viscoelastic pipes at different water temperatures. Materials 2022, 15, 4904. [Google Scholar] [CrossRef]
- Hadj-Taïeb, L.; Hadj-Taïeb, E. Numerical simulation of transient flows in viscoelastic pipes with vapour cavitation. Int. J. Modell. Simul. 2009, 29, 206–213. [Google Scholar] [CrossRef]
- Urbanowicz, K.; Firkowski, M. Extended Bubble Cavitation Model to predict water hammer in viscoelastic pipelines. J. Phys. Conf. Ser. 2018, 1101, 012046. [Google Scholar] [CrossRef]
- Mousavifard, M. Turbulence parameters during transient cavitation flow in viscoelastic pipe. J. Hydraul. Eng. 2022, 148, 04022004. [Google Scholar] [CrossRef]
- Pezzinga, G.; Santoro, V.C. Shock-Capturing Characteristics Models for Transient Cavitating Pipe Flow. J. Hydraul. Eng. 2020, 146, 04020075. [Google Scholar] [CrossRef]
- Pezzinga, G.; Santoro, V.C. MOC-Z Models for Transient Gaseous Cavitation in Pipe Flow. J. Hydraul. Eng. 2020, 146, 04020076. [Google Scholar] [CrossRef]
- Pezzinga, G. Quasi-2D Model for Unsteady Flow in Pipe Networks. J. Hydraul. Eng. 1999, 125, 676–685. [Google Scholar] [CrossRef]
- Santoro, V.C.; Crimì, A.; Pezzinga, G. Developments and Limits of Discrete Vapor Cavity Models of Transient Cavitating Pipe Flow: 1D and 2D Flow Numerical Analysis. J. Hydraul. Eng. 2018, 144, 04018047. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H. A review of water hammer theory and practice. Appl. Mech. Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef]
Test | (°C) | (m/s) | (m) |
---|---|---|---|
1 | 13.8 | 0.49 | 0.47 |
3 | 25.0 | 0.55 | 0.54 |
5 | 31.0 | 0.57 | 0.55 |
7 | 35.0 | 0.55 | 0.53 |
9 | 38.5 | 0.56 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzinga, G. On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis. Modelling 2023, 4, 283-295. https://doi.org/10.3390/modelling4020016
Pezzinga G. On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis. Modelling. 2023; 4(2):283-295. https://doi.org/10.3390/modelling4020016
Chicago/Turabian StylePezzinga, Giuseppe. 2023. "On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis" Modelling 4, no. 2: 283-295. https://doi.org/10.3390/modelling4020016
APA StylePezzinga, G. (2023). On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis. Modelling, 4(2), 283-295. https://doi.org/10.3390/modelling4020016