An Update on Genetics of Adrenal Gland and Associated Disorders
Abstract
:1. Introduction
1.1. SF1
1.2. DAX1 (NR0B1)
1.3. CDKN1C
1.4. SAMD9
1.5. GLI3
1.6. TPIT
1.7. MC2R
1.8. MRAP
1.9. NNT and TXNRD2
1.10. AAAS gene
1.11. MCM4
1.12. WNT4
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, J.-H.; Choi, M.H. Embryonic development and adult regeneration of the adrenal gland. Endocrinol. Metab. 2020, 35, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, F.; Achermann, J.C. Primary adrenal insufficiency: New genetic causes and their long-term consequences. Clin. Endocrinol. 2020, 92, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, F.; McGlacken-Byrne, S.M.; del Valle, I.; Achermann, J.C. Current insights into adrenal insufficiency in the newborn and young infant. Front. Pediatr. 2020, 8, 619041. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, E.; Couper, J.; Rodda, C.; Jameson, J.L.; Achermann, J.C. Variable presentation of X-linked adrenal hypoplasia congenita. J. Pediatr. Endocrinol. Metab. 2001, 14, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Chin, X.; Sreedharan, A.V.; Tan, E.C.; Wei, H.; Kuan, J.L.; Ho, C.W.W.; Lam, J.C.M.; Ting, T.W.; Vasanwala, R.F. MIRAGE syndrome caused by a de novo c.3406G>C (p. Glu1136Gln) Mutation in the SAMD9 gene presenting with neonatal adrenal insufficiency and recurrent intussusception: A case report. Front. Endocrinol. 2021, 12, 742495. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.-T.L.L.; Chan, L.F.; Metherell, L.A.; Clark, A.J.L. Phenotypic characteristics of familial glucocorticoid deficiency (FGD) type 1 and 2. Clin. Endocrinol. 2010, 72, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Mandel, H.; Shemer, R.; Borochowitz, Z.U.; Okopnik, M.; Knopf, C.; Indelman, M.; Drugan, A.; Tiosano, D.; Gershoni-Baruch, R.; Choder, M.; et al. SERKAL syndrome: An autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 2008, 82, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Hatefi, Y.; Yamaguchi, M. Nicotinamide nucleotide transhydrogenase: A model for utilization of substrate binding energy for proton translocation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1996, 10, 444–452. [Google Scholar] [CrossRef]
- Camats, N.; Pandey, A.V.; Fernández-Cancio, M.; Andaluz, P.; Janner, M.; Torán, N.; Moreno, F.; Bereket, A.; Akcay, T.; García-García, E.; et al. Ten novel mutations in the NR5A1 gene cause disordered sex development in 46,XY and ovarian insufficiency in 46,XX individuals. J. Clin. Endocrinol. Metab. 2012, 97, E1294–E1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.J.; Weber, A. Adrenocorticotropin insensitivity syndromes. Endocr. Rev. 1998, 19, 828–843. [Google Scholar] [CrossRef]
- Jühlen, R.; Idkowiak, J.; Taylor, A.E.; Kind, B.; Arlt, W.; Huebner, A.; Koehler, K. Role of ALADIN in human adrenocortical cells for oxidative stress response and steroidogenesis. PLoS ONE 2015, 10, e0124582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narumi, S.; Amano, N.; Ishii, T.; Katsumata, N.; Muroya, K.; Adachi, M.; Toyoshima, K.; Tanaka, Y.; Fukuzawa, R.; Miyako, K.; et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat. Genet. 2016, 48, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Pogliaghi, G.; Cangiano, B.; Duminuco, P.; Vezzoli, V.; Bonomi, M. Triple-A syndrome (TAS): An in-depth overview on genetic and phenotype heterogeneity. Protein Pept. Lett. 2020, 27, 1192–1203. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Furiya, Y.; Asai, H.; Yasui, A.; Ueno, S. ALADINI482S causes selective failure of nuclear protein import and hypersensitivity to oxidative stress in triple A syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 2298–2303. [Google Scholar] [CrossRef] [Green Version]
- Suntharalingham, J.P.; Ishida, M.; Buonocore, F.; Del Valle, I.; Solanky, N.; Demetriou, C.; Regan, L.; Moore, G.E.; Achermann, J.C. Analysis of CDKN1C in fetal growth restriction and pregnancy loss. F1000Research 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Consugar, M.B.; Kubly, V.J.; Lager, D.J.; Hommerding, C.J.; Wong, W.C.; Bakker, E.; Gattone, V.H., 2nd; Torres, V.E.; Breuning, M.H.; Harris, P.C. Molecular diagnostics of Meckel-Gruber syndrome highlights phenotypic differences between MKS1 and MKS3. Hum. Genet. 2007, 121, 591–599. [Google Scholar] [CrossRef]
- Galloway, W.H.; Mowat, A.P. Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs. J. Med. Genet. 1968, 5, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Blumberg, B.; Immken, L.; Lachman, R.; Rightmire, D.; Fowler, M.; Bachman, R.; Beemer, F.A. The Pena-Shokeir syndrome: Report of five cases and further delineation of the syndrome. Am. J. Med. Genet. 1983, 16, 213–224. [Google Scholar] [CrossRef]
- Vogt, J.; Morgan, N.V.; Marton, T.; Maxwell, S.; Harrison, B.J.; Beeson, D.; Maher, E.R. Germline mutation in DOK7 associated with fetal akinesia deformation sequence. J. Med. Genet. 2009, 46, 338–340. [Google Scholar] [CrossRef]
- Salonen, R.; Herva, R.; Norio, R. The hydrolethalus syndrome: Delineation of a “new”, lethal malformation syndrome based on 28 patients. Clin. Genet. 1981, 19, 321–330. [Google Scholar] [CrossRef]
- Seller, M.J.; Chitty, L.S.; Dunbar, H. Pseudotrisomy 13 and autosomal recessive holoprosencephaly. J. Med. Genet. 1993, 30, 970–971. [Google Scholar] [CrossRef] [PubMed]
- Achermann, J.C.; Ozisik, G.; Ito, M.; Orun, U.A.; Harmanci, K.; Gurakan, B.; Jameson, J.L. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J. Clin. Endocrinol. Metab. 2002, 87, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ikeda, Y.; Parker, K.L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994, 77, 481–490. [Google Scholar] [CrossRef]
- Achermann, J.C.; Ito, M.; Ito, M.; Hindmarsh, P.C.; Jameson, J.L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 1999, 22, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingham, J.P.; Buonocore, F.; Duncan, A.J.; Achermann, J.C. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 607–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guran, T.; Buonocore, F.; Saka, N.; Ozbek, M.N.; Aycan, Z.; Bereket, A.; Bas, F.; Darcan, S.; Bideci, A.; Guven, A.; et al. Rare causes of primary adrenal insufficiency: Genetic and clinical characterization of a large nationwide cohort. J. Clin. Endocrinol. Metab. 2016, 101, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gu, W.-X.; Ozisik, G.; To, W.S.; Owen, C.J.; Jameson, J.L.; Achermann, J.C. Analysis of DAX1 (NR0B1) and steroidogenic factor-1 (NR5A1) in children and adults with primary adrenal failure: Ten years’ experience. J. Clin. Endocrinol. Metab. 2006, 91, 3048–3054. [Google Scholar] [CrossRef]
- Achermann, J.C. The role of SF1/DAX1 in adrenal and reproductive function. Ann. Endocrinol. 2005, 66, 233–239. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Takahashi, Y.; Kezuka, Y.; Obara, W.; Kato, Y.; Tamura, S.; Onodera, K.; Segawa, T.; Oda, T.; Sato, M.; et al. Identification and analysis of a novel NR0B1 mutation in late-onset adrenal hypoplasia congenita and hypogonadism. J. Endocr. Soc. 2021, 5, bvaa176. [Google Scholar] [CrossRef]
- Chang, Z.; Lu, W.; Zhao, Z.; Xi, L.; Li, X.; Ye, R.; Ni, J.; Pei, Z.; Zhang, M.; Cheng, R.; et al. Genetic aetiology of primary adrenal insufficiency in Chinese children. BMC Med. Genom. 2021, 14, 172. [Google Scholar] [CrossRef]
- Flück, C.E. Mechanisms in endocrinology: Update on pathogenesis of primary adrenal insufficiency: Beyond steroid enzyme deficiency and autoimmune adrenal destruction. Eur. J. Endocrinol. 2017, 177, R99–R111. [Google Scholar] [CrossRef] [PubMed]
- Soejima, H.; Higashimoto, K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J. Hum. Genet. 2013, 58, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Borges, K.S.; Arboleda, V.A.; Vilain, E. Mutations in the PCNA-binding site of CDKN1C inhibit cell proliferation by impairing the entry into S phase. Cell Div. 2015, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, M.; Sprigg, A.; Johnson, D.S. IMAGe syndrome: Case report with a previously unreported feature and review of published literature. Am. J. Med. Genet. A 2010, 152A, 3138–3142. [Google Scholar] [CrossRef] [PubMed]
- Vilain, E.; Le Merrer, M.; Lecointre, C.; Desangles, F.; Kay, M.A.; Maroteaux, P.; McCabe, E.R.B. IMAGe, a new clinical association of intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies. J. Clin. Endocrinol. Metab. 1999, 84, 4335–4340. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, V.A.; Lee, H.; Parnaik, R.; Fleming, A.; Banerjee, A.; Ferraz-de-Souza, B.; Délot, E.C.; Rodriguez-Fernandez, I.A.; Braslavsky, D.; Bergadá, I.; et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat. Genet. 2012, 44, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Bolomiti, M.; Båtnes-Pedersen, E.; Telman, G.; Januszkiewicz-Lewandowska, D. A Case report: Co-occurrence of IMAGe syndrome and rhabdomyosarcoma. Cancer Genet. 2021, 256–257, 100–105. [Google Scholar] [CrossRef]
- Buonocore, F.; Kühnen, P.; Suntharalingham, J.P.; Del Valle, I.; Digweed, M.; Stachelscheid, H.; Khajavi, N.; Didi, M.; Brady, A.F.; Blankenstein, O.; et al. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. J. Clin. Investig. 2017, 127, 1700–1713. [Google Scholar] [CrossRef] [Green Version]
- Tanase-Nakao, K.; Olson, T.S.; Narumi, S. MIRAGE Syndrome; Adam, M., Ardinger, H., Pagon, R., Eds.; University of Washington: Seattle, WA, USA, 2020. [Google Scholar]
- Gomes, D.C.; Leal, L.F.; Mermejo, L.M.; Scrideli, C.A.; Martinelli, C.E.J.; Fragoso, M.C.B.V.; Latronico, A.C.; Tone, L.G.; Tucci, S.; Yunes, J.A.; et al. Sonic hedgehog signaling is active in human adrenal cortex development and deregulated in adrenocortical tumors. J. Clin. Endocrinol. Metab. 2014, 99, E1209–E1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.; Graham, J.M.; Olney, A.H.; Biesecker, L.G. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat. Genet. 1997, 15, 266–268. [Google Scholar] [CrossRef]
- Hall, J.G.; Pallister, P.D.; Clarren, S.K.; Beckwith, J.B.; Wiglesworth, F.W.; Fraser, F.C.; Cho, S.; Benke, P.J.; Reed, S.D. Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly—A new syndrome? Part I: Clinical, causal, and pathogenetic considerations. Am. J. Med. Genet. 1980, 7, 47–74. [Google Scholar] [CrossRef] [PubMed]
- Hayek, F. Pallister–Hall syndrome with orofacial narrowing and tethered cord: A case report. J. Med. Case Rep. 2018, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Maudhoo, A.; Maharaj, A.; Buonocore, F.; Martos-Moreno, G.A.; Argente, J.; Achermann, J.C.; Chan, L.F.; Metherell, L.A. Missplicing due to a synonymous, T96 = exonic substitution in the T-box transcription factor TBX19 resulting in isolated ACTH deficiency. Endocrinol. Diabetes Metab. Case Rep. 2021, 2021, 0128. [Google Scholar] [CrossRef]
- Couture, C.; Saveanu, A.; Barlier, A.; Carel, J.C.; Fassnacht, M.; Flück, C.E.; Houang, M.; Maes, M.; Phan-Hug, F.; Enjalbert, A.; et al. Phenotypic homogeneity and genotypic variability in a large series of congenital isolated ACTH-deficiency patients with TPIT gene mutations. J. Clin. Endocrinol. Metab. 2012, 97, E486–E495. [Google Scholar] [CrossRef] [Green Version]
- Vallette-Kasic, S.; Brue, T.; Pulichino, A.-M.; Gueydan, M.; Barlier, A.; David, M.; Nicolino, M.; Malpuech, G.; Déchelotte, P.; Deal, C.; et al. Congenital isolated adrenocorticotropin deficiency: An underestimated cause of neonatal death, explained by TPIT gene mutations. J. Clin. Endocrinol. Metab. 2005, 90, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumié, H.; Metherell, L.A.; Clark, A.J.L.; Beauloye, V.; Maes, M. Clinical and biological phenotype of a patient with familial glucocorticoid deficiency type 2 caused by a mutation of melanocortin 2 receptor accessory protein. Eur. J. Endocrinol. 2007, 157, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heshmatzad, K.; Mahdieh, N.; Rabbani, A.; Didban, A.; Rabbani, B. The Genetic Perspective of Familial Glucocorticoid Deficiency: In Silico Analysis of Two Novel Variants. Int. J. Endocrinol. 2020, 2020, 2190508. [Google Scholar] [CrossRef]
- Elias, L.L.; Huebner, A.; Metherell, L.A.; Canas, A.; Warne, G.L.; Bitti, M.L.; Cianfarani, S.; Clayton, P.E.; Savage, M.O.; Clark, A.J. Tall stature in familial glucocorticoid deficiency. Clin. Endocrinol. 2000, 53, 423–430. [Google Scholar] [CrossRef]
- Lin, L.; Hindmarsh, P.C.; Metherell, L.A.; Alzyoud, M.; Al-Ali, M.; Brain, C.E.; Clark, A.J.L.; Dattani, M.T.; Achermann, J.C. Severe loss-of-function mutations in the adrenocorticotropin receptor (ACTHR, MC2R) can be found in patients diagnosed with salt-losing adrenal hypoplasia. Clin. Endocrinol. 2007, 66, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Berruien, N.N.A.; Smith, C.L. Emerging roles of melanocortin receptor accessory proteins (MRAP and MRAP2) in physiology and pathophysiology. Gene 2020, 757, 144949. [Google Scholar] [CrossRef]
- Novoselova, T.V.; Hussain, M.; King, P.J.; Guasti, L.; Metherell, L.A.; Charalambous, M.; Clark, A.J.L.; Chan, L.F. MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 32, fj201701274RR. [Google Scholar] [CrossRef] [Green Version]
- Meimaridou, E.; Hughes, C.R.; Kowalczyk, J.; Guasti, L.; Chapple, J.P.; King, P.J.; Chan, L.F.; Clark, A.J.L.; Metherell, L.A. Familial glucocorticoid deficiency: New genes and mechanisms. Mol. Cell. Endocrinol. 2013, 371, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, O.; Liu, X.; van Diemen, C.C.; Bakker-van Waarde, W.M.; Sikkema-Raddatz, B.; Sinke, R.J.; Zhang, J.; van Ravenswaaij-Arts, C.M.A. A novel homozygous insertion and review of published mutations in the NNT gene causing familial glucocorticoid deficiency (FGD). Eur. J. Med. Genet. 2015, 58, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, F.; Maharaj, A.; Qamar, Y.; Koehler, K.; Suntharalingham, J.P.; Chan, L.F.; Ferraz-de-Souza, B.; Hughes, C.R.; Lin, L.; Prasad, R.; et al. Genetic analysis of pediatric primary adrenal insufficiency of unknown etiology: 25 years’ experience in the UK. J. Endocr. Soc. 2021, 5, bvab086. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Chan, L.F.; Hughes, C.R.; Kaski, J.P.; Kowalczyk, J.C.; Savage, M.O.; Peters, C.J.; Nathwani, N.; Clark, A.J.L.; Storr, H.L.; et al. Thioredoxin reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J. Clin. Endocrinol. Metab. 2014, 99, E1556–E1563. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Kowalczyk, J.C.; Meimaridou, E.; Storr, H.L.; Metherell, L.A. Oxidative stress and adrenocortical insufficiency. J. Endocrinol. 2014, 221, R63–R73. [Google Scholar] [CrossRef] [Green Version]
- Sarathi, V.; Shah, N.S. Triple-A syndrome. Adv. Exp. Med. Biol. 2010, 685, 1–8. [Google Scholar] [CrossRef]
- Cho, A.-R.; Yang, K.-J.; Bae, Y.; Bahk, Y.Y.; Kim, E.; Lee, H.; Kim, J.K.; Park, W.; Rhim, H.; Choi, S.Y.; et al. Tissue-specific expression and subcellular localization of ALADIN, the absence of which causes human triple A syndrome. Exp. Mol. Med. 2009, 41, 381. [Google Scholar] [CrossRef]
- Kind, B.; Koehler, K.; Lorenz, M.; Huebner, A. The nuclear pore complex protein ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope. Biochem. Biophys. Res. Commun. 2009, 390, 205–210. [Google Scholar] [CrossRef]
- Prasad, R.; Metherell, L.A.; Clark, A.J.; Storr, H.L. Deficiency of ALADIN impairs redox homeostasis in human adrenal cells and inhibits steroidogenesis. Endocrinology 2013, 154, 3209–3218. [Google Scholar] [CrossRef] [Green Version]
- Roucher-Boulez, F.; Brac de la Perriere, A.; Jacquez, A.; Chau, D.; Guignat, L.; Vial, C.; Morel, Y.; Nicolino, M.; Raverot, G.; Pugeat, M. Triple-A syndrome: A wide spectrum of adrenal dysfunction. Eur. J. Endocrinol. 2018, 178, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Jayant, S.S.; Gupta, R.; Agrawal, K.; Das, L.; Dutta, P.; Bhansali, A. Triple A (Allgrove) syndrome due to AAAS gene mutation with a rare association of amyotrophy. Hormones 2021, 20, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Gineau, L.; Cognet, C.; Kara, N.; Lach, F.P.; Dunne, J.; Veturi, U.; Picard, C.; Trouillet, C.; Eidenschenk, C.; Aoufouchi, S.; et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J. Clin. Investig. 2012, 122, 821–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, K.M.; Jenkins, D.E.; Sullivan, R.; Harms, F.L.; von Elsner, L.; Ockeloen, C.W.; de Munnik, S.; Bongers, E.M.H.F.; Murray, J.; Pachter, N.; et al. MCM complex members MCM3 and MCM7 are associated with a phenotypic spectrum from Meier-Gorlin syndrome to lipodystrophy and adrenal insufficiency. Eur. J. Hum. Genet. 2021, 29, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, S.C.; Bailey, K.J.; Freeland, A. Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells 2007, 25, 3121–3132. [Google Scholar] [CrossRef]
- Hughes, C.R.; Guasti, L.; Meimaridou, E.; Chuang, C.-H.; Schimenti, J.C.; King, P.J.; Costigan, C.; Clark, A.J.L.; Metherell, L.A. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J. Clin. Investig. 2012, 122, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Garnis, C.; Campbell, J.; Davies, J.J.; Macaulay, C.; Lam, S.; Lam, W.L. Involvement of multiple developmental genes on chromosome 1p in lung tumorigenesis. Hum. Mol. Genet. 2005, 14, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Bernard, P.; Harley, V.R. Wnt4 action in gonadal development and sex determination. Int. J. Biochem. Cell Biol. 2007, 39, 31–43. [Google Scholar] [CrossRef]
- Bernard, P.; Fleming, A.; Lacombe, A.; Harley, V.R.; Vilain, E. Wnt4 inhibits beta-catenin/TCF signalling by redirecting beta-catenin to the cell membrane. Biol. Cell 2008, 100, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Kempná, P.; Flück, C.E. Adrenal gland development and defects. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 77–93. [Google Scholar] [CrossRef]
Genes | Location | Disease | Inheritance | Features | OMIM |
---|---|---|---|---|---|
DAX1/NROB1 | xp21.2 | X-linked adrenal hypoplasia congenita (AHC) | XLR | Hypogonadotropic hypogonadism, salt-wasting adrenal insufficiency, gonadotropin independent precocious puberty [4] | 300473 |
SF1/NR5A1 | 9q33.3 | Steroidogenic factor 1 deficiency | AD | 46,XY DSD, gonadal insufficiency, hypospadias, adrenal insufficiency [5] | 612965 |
GLI3 | 7p14.1 | Pallister–Hall syndrome | AD | Adrenal hypoplasia, hypopituitarism, polydactyly, imperforate anus, hypothalamic hamartoblastoma [6] | 165240 |
WNT4 | 1p36.12 | SERKAL syndrome | AR | Female sex reversal; dysgenesis of adrenals, kidneys, lung [7] | 603490 |
TPIT | 1q24.2 | Isolated ACTH deficiency | AR | Hypoglycemia, hypoglycemic seizures, jaundice [8] | 604614 |
AAAS | 12q13.13 | Triple A Sydrome | AR | Adrenal insufficiency, alacrimia and achalasia cardia [9] | 605378 |
SAMD9 | 7q21.2 | MIRAGE Sydrome | AD | Myelodysplasia, infections, restricted growth, adrenal hypoplasia, gonadal anomalies and enteropathy [10] | 610456 |
MCM4 | 8q11.21 | FGD DNA Repair Defect | AR | Adrenal insufficiency, NK cell deficiency, increased chromosomal breakage and growth failure [11] | 602638 |
CDKN1C | 11p15.4 | IMAGE Sydrome | AD; Imprinted | Intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita, genital anomalies [12] | 600856 |
MC2R | 18p1.21 | Familial Glucocorticoid Deficiency Type 1 (FGD1) | AR | Failure to thrive, hypoglycemia, jaundice, hyperpigmentation of the skin, eczema, and increased susceptibility to infection; macrocephaly, tall stature [13,14] | 607397 |
MRAP | 21q22.11 | Familial Glucocorticoid Deficiency Type 2 (FGD2) | AR | Failure to thrive, hypoglycemia, jaundice, hyperpigmentation of the skin, eczema, and increased susceptibility to infection [13] | 609196 |
NNT | 5p12 | FGD deficiency of mitochondrial ROS detoxification | AR | Hyperpigmentation, failure to thrive, increased susceptibility to infection in the pediatric population [15] | 607878 |
TXNRD2 | 22q11.21 | FGD deficiency of mitochondrial ROS detoxification | AR | Hyperpigmentation, failure to thrive, increased susceptibility to infection in the pediatric population [15] | 606448 |
MKS1 | 17q22 | Meckel–Gruber syndrome | AR | Cystic renal disease, CNS malformation (mostly occipital encephalocele), polydactily (mostly postaxial), and hepatic abnormalities [16] | 24900 |
WDR73 | 15q25.2 | Galloway–Mowat syndrome | AR | Microcephay, hiatal hernia, nephrotic syndrome [17] | 251300 |
MUSK (FADS1) RAPSN (FADS2) DOK7 (FADS3) | 9q31.3 11p.11.2 4p.16.3 | Fetal akinesia deformation sequence (FADS) | AR | Fetal akinesia, arthrogryposis, camptodactyly, facial anomalies, cardiac defects, IUGR, polyhydramnios, pulmonary and adrenal hypoplasia [18,19] | 208150 |
HYLS1 | 11q24.2 | Hydrolethalus syndrome | AR | Hydrocephalus, midline defects, polydactily, lung and heart defects [20] | 236680 |
Psuedotrisomy 13 syndrome | AR(?) | Holoprosencephaly, facial anomalies, polydactyly, cardiac and genital anomalies, normal chromosomes [21] | 264480 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gauss, C.; Rowland, D.; Ergun-Longmire, B. An Update on Genetics of Adrenal Gland and Associated Disorders. Endocrines 2022, 3, 187-197. https://doi.org/10.3390/endocrines3020017
Gauss C, Rowland D, Ergun-Longmire B. An Update on Genetics of Adrenal Gland and Associated Disorders. Endocrines. 2022; 3(2):187-197. https://doi.org/10.3390/endocrines3020017
Chicago/Turabian StyleGauss, Chester, Dustin Rowland, and Berrin Ergun-Longmire. 2022. "An Update on Genetics of Adrenal Gland and Associated Disorders" Endocrines 3, no. 2: 187-197. https://doi.org/10.3390/endocrines3020017
APA StyleGauss, C., Rowland, D., & Ergun-Longmire, B. (2022). An Update on Genetics of Adrenal Gland and Associated Disorders. Endocrines, 3(2), 187-197. https://doi.org/10.3390/endocrines3020017