Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy
Abstract
:1. Introduction
2. Anaerobic Transformation of Organics
2.1. Description of the Digestion Process
2.2. Increasing Biomass Activity as a Strategy for Improving Performance
3. Co-Digestion Proposed as the Best Way to Take Advantage of Process Synergies
4. Increasing Reactor Productivity by the Increase in Solid Content and Temperature
5. Biogas and Its Role as Renewable Fuel in the Decarbonization of the Economy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valero, A.; Valero, A. Thermodynamic rarity and recyclability of raw materials in the energy transition: The need for an in-spiral economy. Entropy 2019, 21, 873. [Google Scholar] [CrossRef] [Green Version]
- Gregson, N.; Crang, M.; Fuller, S.; Holmes, H. Interrogating the circular economy: The moral economy of resource recovery in the EU. Econ. Soc. 2015, 44, 218–243. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- EUR-Lex. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 21 April 2021).
- Molina-Moreno, V.; Leyva-Díaz, J.C.; Llorens-Montes, F.J.; Cortés-García, F.J. Design of indicators of circular economy as instruments for the evaluation of sustainability and efficiency in wastewater from pig farming industry. Water 2017, 9, 653. [Google Scholar] [CrossRef]
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions. Resources 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Sevillano, C.; Pesantes, A.; Carpio, E.P.; Martínez, E.; Gómez, X. Anaerobic Digestion for Producing Renewable Energy—The Evolution of This Technology in a New Uncertain Scenario. Entropy 2021, 23, 145. [Google Scholar] [CrossRef]
- Rekleitis, G.; Haralambous, K.-J.; Loizidou, M.; Aravossis, K. Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy. Energies 2020, 13, 4428. [Google Scholar] [CrossRef]
- Tantau, A.D.; Maassen, M.A.; Fratila, L. Models for Analyzing the Dependencies between Indicators for a Circular Economy in the European Union. Sustainability 2018, 10, 2141. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-R.; Tsai, W.-T. Valorization of Value-Added Resources from the Anaerobic Digestion of Swine-Raising Manure for Circular Economy in Taiwan. Fermentation 2020, 6, 81. [Google Scholar] [CrossRef]
- Menon, A.; Lyng, J.G. Circular bioeconomy solutions: Driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids. Rev. Environ. Sci. Bio/Technol. 2021, 20, 189–208. [Google Scholar] [CrossRef]
- Pecorini, I.; Peruzzi, E.; Albini, E.; Doni, S.; Macci, C.; Masciandaro, G.; Iannelli, R. Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application. Sustainability 2020, 12, 3042. [Google Scholar] [CrossRef] [Green Version]
- Selvaggi, R.; Valenti, F. Assessment of Fruit and Vegetable Residues Suitable for Renewable Energy Production: GIS-Based Model for Developing New Frontiers within the Context of Circular Economy. Appl. Syst. Innov. 2021, 4, 10. [Google Scholar] [CrossRef]
- Mateescu, C.; Dima, A.-D. Critical analysis of key barriers and challenges to the growth of the biogas sector: A case study for Romania. Biomass Convers. Biorefinery 2020, 1–14. [Google Scholar] [CrossRef]
- Roopnarain, A.; Ndaba, B.; Bello-Akinosho, M.; Bamuza-Pemu, E.; Mukhuba, M.; Nkuna, R.; Adeleke, R. Biogas Technology in Africa: An Assessment of Feedstock, Barriers, Socio-Economic Impact and the Way Forward. In Biogas Production; Springer: Cham, Switzerland, 2020; pp. 415–445. [Google Scholar]
- Velivela, A.; Barham, H.; Bauer, J.; Roschke, J.; Daim, T.U.; Meissner, D. Biogas: Converting Waste to Energy. In Science, Technology and Innovation Studies; Springer: Cham, Switzerland, 2020; pp. 285–298. [Google Scholar]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, V.; Eftaxias, A.; Stamatelatou, K.; Noutsopoulos, C.; Vlachokostas, C.; Aivasidis, A. Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renew. Energy 2021, 168, 438–447. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Zhang, S.; Song, Y.; Xue, S.; Liu, L.; Lvy, X.; Wang, X.; Yang, G. Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China. Renew. Sustain. Energy Rev. 2021, 144, 110973. [Google Scholar] [CrossRef]
- Loizia, P.; Neofytou, N.; Zorpas, A.A. The concept of circular economy strategy in food waste management for the optimi-zation of energy production through anaerobic digestion. Environ. Sci. Pollut. Res. 2019, 26, 14766–14773. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sharma, H.B.; Dubey, B.K. Integrated Bioprocessing of Urban Organic Wastes by Anaerobic Digestion Coupled with Hydrothermal Carbonization for Value Added Bio-Carbon and Bio-Product Recovery: A Concept of Circular Economy. In Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2020; Volume 89, pp. 47–54. [Google Scholar]
- Sharma, H.B.; Panigrahi, S.; Sarmah, A.K.; Dubey, B.K. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept. Sci. Total Environ. 2020, 706, 135907. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, A.; Defersha, F.; Dubey, B. Municipal Food Waste to Biomethane and Biofertilizer: A Circular Economy Concept. Waste Biomass Valorization 2017, 9, 601–611. [Google Scholar] [CrossRef]
- Ribić, B.; Voća, N.; Ilakovac, B. Concept of sustainable waste management in the city of Zagreb: Towards the implementation of circular economy approach. J. Air Waste Manag. Assoc. 2016, 67, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Ziganshin, A.M.; Schmidt, T.; Scholwin, F.; Il’Inskaya, O.N.; Harms, H.; Kleinsteuber, S. Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl. Microbiol. Biotechnol. 2010, 89, 2039–2052. [Google Scholar] [CrossRef] [PubMed]
- Langer, S.G.; Gabris, C.; Einfalt, D.; Wemheuer, B.; Kazda, M.; Bengelsdorf, F.R. Different response of bacteria, archaea and fungi to process parameters in nine full-scale anaerobic digesters. Microb. Biotechnol. 2019, 12, 1210–1225. [Google Scholar] [CrossRef]
- Van, D.P.; Fujiwara, T.; Leu-Tho, B.; Toan, S.; Phu, P.; Hoang-Minh, G. A review of anaerobic digestion systems for biode-gradable waste: Configurations, operating parameters, and current trends. Environ. Eng. Res. 2019, 25, 1–17. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Govil, T.; Tripathi, A.K.; McGeary, J.; Farrar, K.; Sani, R.K. Thermophilic anaerobic digestion: Enhanced and sus-tainable methane production from co-digestion of food and lignocellulosic wastes. Energies 2018, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Zhao, N.; Song, J.; Wang, X. Interactive Effects of Chemical Composition of Food Waste during Anaerobic Co-Digestion under Thermophilic Temperature. Sustainability 2019, 11, 2933. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Quiroga, X.; Aboudi, K.; Álvarez-Gallego, C.J.; Romero-García, L.I. Enhancement of methane production in ther-mophilic anaerobic co-digestion of exhausted sugar beet pulp and pig manure. Appl. Sci. 2019, 9, 1791. [Google Scholar] [CrossRef] [Green Version]
- Lobato, A.; Cuetos, M.; Gómez, X.; Morán, A. Improvement of biogas production by co-digestion of swine manure and residual glycerine. Biofuels 2010, 1, 59–68. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Fernández, C.; Gómez, X.; Moran, A. Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 2011, 16, 1044–1052. [Google Scholar] [CrossRef]
- Martínez, E.J.; Sotres, A.; Arenas, C.B.; Blanco, D.; Martínez, O.; Gómez, X. Improving Anaerobic Digestion of Sewage Sludge by Hydrogen Addition: Analysis of Microbial Populations and Process Performance. Energies 2019, 12, 1228. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, W.; Engeli, H.; Gradenecker, M. Co-digestion of organic solid waste and sludge from sewage treatment. Water Sci. Technol. 2000, 41, 213–221. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Gómez, X.; Otero, M.; Morán, A. Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 2008, 40, 99–106. [Google Scholar] [CrossRef]
- Porselvam, S.; Mahendra, B.; Srinivasan, S.V.; Ravindranath, E.; Suthanthararajan, R. Enhanced Biogas Production from Co-digestion of Intestine Waste from Slaughterhouse and Food Waste. Energy Fuels 2017, 31, 12133–12140. [Google Scholar] [CrossRef]
- Lyberatos, G.; Skiadas, I.V. Modelling of anaerobic digestion–A review. Global Nest. Int. J. 1999, 1, 63–76. [Google Scholar]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Bio/Technol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Pavlostathis, S.G.; Giraldo-Gomez, E. Kinetics of Anaerobic Treatment. Water Sci. Technol. 1991, 24, 35–59. [Google Scholar] [CrossRef]
- Vavilin, V.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Manag. 2008, 28, 939–951. [Google Scholar] [CrossRef]
- González, J.; Sánchez, M.E.; Gómez, X. Enhancing Anaerobic Digestion: The Effect of Carbon Conductive Materials. C 2018, 4, 59. [Google Scholar] [CrossRef] [Green Version]
- Christy, P.M.; Gopinath, L.; Divya, D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew. Sustain. Energy Rev. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Whitmore, T.N.; Lloyd, D.; Jones, G.; Williams, T.N. Hydrogen-dependent control of the continuous anaerobic digestion process. Appl. Microbiol. Biotechnol. 1987, 26, 383–388. [Google Scholar] [CrossRef]
- Ban, Q.; Li, J.; Zhang, L.; Jha, A.K.; Nies, L. Linking Performance with Microbial Community Characteristics in an Anaerobic Baffled Reactor. Appl. Biochem. Biotechnol. 2013, 169, 1822–1836. [Google Scholar] [CrossRef]
- Dubé, C.-D.; Guiot, S.R. Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review. Blue Biotechnol. 2015, 151, 101–115. [Google Scholar] [CrossRef]
- Bagi, Z.; Ács, N.; Bálint, B.; Horváth, L.; Dobó, K.; Perei, K.R.; Rákhely, G.; Kovács, K.L. Biotechnological intensification of biogas production. Appl. Microbiol. Biotechnol. 2007, 76, 473–482. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, L.; Chen, Y.; Cao, Q.; Liu, X.; Li, D. Effect of H2 addition on the microbial community structure of a mesophilic anaerobic digestion system. Energy 2020, 198, 117368. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng. 2012, 109, 2729–2736. [Google Scholar] [CrossRef]
- Ács, N.; Bagi, Z.; Rákhely, G.; Minárovics, J.; Nagy, K.; Kovács, K.L. Bioaugmentation of biogas production by a hydro-gen-producing bacterium. Bioresour. Technol. 2015, 186, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Kovács, K.L.; Ács, N.; Kovács, E.; Wirth, R.; Rákhely, G.; Strang, O.; Herbel, Z.; Bagi, Z. Improvement of Biogas Production by Bioaugmentation. BioMed Res. Int. 2012, 2013, 1–7. [Google Scholar] [CrossRef]
- Dar, S.A.; Kleerebezem, R.; Stams, A.J.M.; Kuenen, J.G.; Muyzer, G. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl. Microbiol. Biotechnol. 2008, 78, 1045–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, P.; Shaw, B. Inhibition of methane production by Methanobacterium formicicum. Water Res. 1976, 10, 849–852. [Google Scholar] [CrossRef]
- Braun, R.; Huber, P.; Meyrath, J. Ammonia toxicity in liquid piggery manure digestion. Biotechnol. Lett. 1981, 3, 159–164. [Google Scholar] [CrossRef]
- Omil, F.; Méndez, R.; Lema, J.M. Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresour. Technol. 1995, 54, 269–278. [Google Scholar] [CrossRef]
- Procházka, J.; Dolejš, P.; Máca, J.; Dohányos, M. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process. Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; García-González, M.C.; González-Fernández, C.; Cuetos, M.J.; Morán, A.; Gómez, X. Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresour. Technol. 2010, 101, 9479–9485. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lei, X.; Ruan, W.; Zhao, M. Synergetic enhancement of methane production and system resilience during anaerobic digestion of food waste in ammonia-tolerant anaerobic sludge system. Environ. Sci. Pollut. Res. 2021, 1–11. [Google Scholar] [CrossRef]
- Yan, M.; Fotidis, I.A.; Tian, H.; Khoshnevisan, B.; Treu, L.; Tsapekos, P.; Angelidaki, I. Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: Focusing on microbial community dynamics. Bioresour. Technol. 2019, 286, 121376. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Treu, L.; Campanaro, S.; Tian, H.; Zhu, X.; Khoshnevisan, B.; Tsapekos, P.; Angelidaki, I.; Fotidis, I.A. Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. Chem. Eng. J. 2020, 401, 126159. [Google Scholar] [CrossRef]
- Alatriste-Mondragón, F.; Samar, P.; Cox, H.H.J.; Ahring, B.K.; Iranpour, R. Anaerobic Codigestion of Municipal, Farm, and Industrial Organic Wastes: A Survey of Recent Literature. Water Environ. Res. 2006, 78, 607–636. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Macé, S.; Astals, S. Codigestion of solid wastes: A review of its uses and perspectives including modeling. Crit. Rev. Biotechnol. 2011, 31, 99–111. [Google Scholar] [CrossRef]
- Gómez, X.; Cuetos, M.J.; Cara, J.; Moran, A.; García, A.I. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: Conditions for mixing and evaluation of the organic loading rate. Renew. Energ. 2006, 31, 2017–2024. [Google Scholar] [CrossRef]
- Babaee, A.; Shayegan, J.; Roshani, A. Anaerobic slurry co-digestion of poultry manure and straw: Effect of organic loading and temperature. J. Environ. Health Sci. Eng. 2013, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, L.D.; Koch, K.; Bolzonella, D.; Drewes, J.E. Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities. Renew. Sustain. Energy Rev. 2017, 72, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Chow, W.L.; Chong, S.; Lim, J.W.; Chan, Y.J.; Chong, M.F.; Tiong, T.J.; Chin, J.K.; Pan, G.-T. Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield. Processes 2020, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Bolzonella, D.; Battistoni, P.; Susini, C.; Cecchi, F. Anaerobic codigestion of waste activated sludge and OFMSW: The experi-ences of Viareggio and Treviso plants (Italy). Water Sci. Technol. 2006, 53, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Park, N.D.; Thring, R.W.; Garton, R.P.; Rutherford, M.P.; Helle, S.S. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge–A full scale study. Water Sci. Technol. 2011, 64, 1851–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Søndergaard, M.M.; Fotidis, I.A.; Kovalovszki, A.; Angelidaki, I. Anaerobic Co-digestion of Agricultural Byproducts with Manure for Enhanced Biogas Production. Energy Fuels 2015, 29, 8088–8094. [Google Scholar] [CrossRef] [Green Version]
- Li, J.X.; Wang, L.A.; Zhan, X.Y.; Huang, C. Exploring the biogas production and microbial community from co-digestion of sewage sludge with municipal solid waste incineration fresh leachate. Int. J. Environ. Sci. Technol. 2021, 18, 901–912. [Google Scholar] [CrossRef]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Qin, K.; Ding, J.; Xue, M.; Yang, C.; Jiang, J.; Zhao, Q. Optimization of the co-digestion of sewage sludge, maize straw and cow manure: Microbial responses and effect of fractional organic characteristics. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Cheng, C.; He, C.; Yu, R.; Shen, D.; Jiao, Y. Experimental study on anaerobic co-digestion of the individual component of biomass with sewage sludge: Methane production and microbial community. Biomass Convers. Biorefinery 2020, 1–14. [Google Scholar] [CrossRef]
- Keucken, A.; Habagil, M.; Batstone, D.; Jeppsson, U.; Arnell, M. Anaerobic Co-Digestion of Sludge and Organic Food Waste—Performance, Inhibition, and Impact on the Microbial Community. Energies 2018, 11, 2325. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Poquet, V.; Papirio, S.; Trably, E.; Rintala, J.; Escudié, R.; Esposito, G. High-solids anaerobic digestion requires a trade-off between total solids, inoculum-to-substrate ratio and ammonia inhibition. Int. J. Environ. Sci. Technol. 2019, 16, 7011–7024. [Google Scholar] [CrossRef]
- Otero, M.; Lobato, A.; Cuetos, M.; Sánchez, M.; Gómez, X. Digestion of cattle manure: Thermogravimetric kinetic analysis for the evaluation of organic matter conversion. Bioresour. Technol. 2011, 102, 3404–3410. [Google Scholar] [CrossRef] [PubMed]
- Mahato, P.; Goyette, B.; Rahaman, S.; Rajagopal, R. Processing High-Solid and High-Ammonia Rich Manures in a Two-Stage (Liquid-Solid) Low-Temperature Anaerobic Digestion Process: Start-Up and Operating Strategies. Bioengineering 2020, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Gómez, X.; Meredith, W.; Fernández, C.; Sánchez-García, M.; Díez-Antolínez, R.; Garzón-Santos, J.; Snape, C.E. Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: Application of Py-GC/MS. Environ. Sci. Pollut. Res. 2018, 25, 25600–25611. [Google Scholar] [CrossRef]
- González, R.; Smith, R.; Blanco, D.; Fierro, J.; Gómez, X. Application of thermal analysis for evaluating the effect of glycerine addition on the digestion of swine manure. J. Therm. Anal. Calorim. 2018, 135, 2277–2286. [Google Scholar] [CrossRef]
- Alrawashdeh, K.A.B.; Pugliese, A.; Slopiecka, K.; Pistolesi, V.; Massoli, S.; Bartocci, P.; Bidini, G.; Fantozzi, F. Codigestion of Untreated and Treated Sewage Sludge with the Organic Fraction of Municipal Solid Wastes. Fermentation 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Lee, S.; Kim, K.; Jeon, T.; Shin, S. Study of anaerobic co-digestion on wastewater treatment sludge and food waste leachate using BMP test. J. Mater. Cycles Waste Manag. 2018, 20, 283–292. [Google Scholar] [CrossRef]
- Takashima, M.; Yaguchi, J. High-solids thermophilic anaerobic digestion of sewage sludge: Effect of ammonia concentration. J. Mater. Cycles Waste Manag. 2021, 23, 205–213. [Google Scholar] [CrossRef]
- Fierro, J.; Martinez, E.J.; Rosas, J.G.; Fernández, R.A.; López, R.; Gomez, X. Co-Digestion of Swine Manure and Crude Glycerine: Increasing Glycerine Ratio Results in Preferential Degradation of Labile Compounds. Water Air Soil Pollut. 2016, 227, 1–13. [Google Scholar] [CrossRef]
- Habagil, M.; Keucken, A.; Horváth, I.S. Biogas Production from Food Residues—The Role of Trace Metals and Co-Digestion with Primary Sludge. Environment 2020, 7, 42. [Google Scholar] [CrossRef]
- Wang, F.; Pei, M.; Qiu, L.; Yao, Y.; Zhang, C.; Qiang, H. Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates. Int. J. Environ. Res. Public Health 2019, 16, 2239. [Google Scholar] [CrossRef] [Green Version]
- Fierro, J.; Torres, E.J.M.; Rosas, J.G.; Blanco, D.; Gómez, X.; Blanco-Cobián, D. Anaerobic codigestion of poultry manure and sewage sludge under solid-phase configuration. Environ. Prog. Sustain. Energy 2013, 33, 866–872. [Google Scholar] [CrossRef]
- Blanco, D.; Lobato, A.; Fernández, C.; Escapa, A.; Gómez, X. Batch dry anaerobic codigestion of sheep manure and potato waste. In Proceedings of the 14th RAMIRAN International Conference, Lisboa, Portugal, 13–15 September 2010. [Google Scholar]
- Xing, T.; Kong, X.; Dong, P.; Zhen, F.; Sun, Y. Leachate recirculation effects on solid-state anaerobic digestion of Pennisetum hybrid and microbial community analysis. J. Chem. Technol. Biotechnol. 2019, 95, 1216–1224. [Google Scholar] [CrossRef]
- Kusch, S.; Oechsner, H.; Jungbluth, T. Biogas production with horse dung in solid-phase digestion systems. Bioresour. Technol. 2008, 99, 1280–1292. [Google Scholar] [CrossRef] [Green Version]
- Nomanbhay, S.; Ong, M.Y.; Chew, K.W.; Show, P.-L.; Lam, M.K.; Chen, W.-H. Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies 2020, 13, 1483. [Google Scholar] [CrossRef] [Green Version]
- Takeda, P.Y.; Gotardo, J.T.; Gomes, S.D. Anaerobic Co-digestion of Leachate and Glycerol for Renewable Energy Generation. Environ. Technol. 2020, 1–28. [Google Scholar] [CrossRef]
- Ferreira, J.D.S.; Volschan, I.; Cammarota, M.C. Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production. Environ. Sci. Pollut. Res. 2018, 25, 21811–21821. [Google Scholar] [CrossRef]
- Astals, S.; Nolla-Ardèvol, V.; Mata-Alvarez, J. Thermophilic co-digestion of pig manure and crude glycerol: Process per-formance and digestate stability. J. Biotechnol. 2013, 166, 97–104. [Google Scholar] [CrossRef]
- Paulista, L.O.; Boaventura, R.A.; Vilar, V.J.; Pinheiro, A.L.; Martins, R.J. Enhancing methane yield from crude glycerol an-aerobic digestion by coupling with ultrasound or A. niger/E. coli biodegradation. Environ. Sci. Pollut. Res. 2020, 27, 1461–1474. [Google Scholar] [CrossRef]
- Huber, D.H.; Ramirez-Garcia, A.; Chavarria-Palma, J.E.; Espinosa-Solares, T.; Noundou, V.L.; Montenegro-Garcia, N.A.; Adeleye, A.; Martin, C.S. Stress induced by crude glycerol in a thermophilic digester: Microbial community divergence and resilience, but slow process recovery. Appl. Microbiol. Biotechnol. 2020, 104, 10769–10781. [Google Scholar] [CrossRef]
- González, R.; González, J.; Rosas, J.G.; Smith, R.; Gómez, X. Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C—J. Carbon Res. 2020, 6, 43. [Google Scholar] [CrossRef]
- Zahedi, S.; Martín, C.; Solera, R.; Pérez, M. Evaluating the Effectiveness of Adding Chicken Manure in the Anaerobic Mesophilic Codigestion of Sewage Sludge and Wine Distillery Wastewater: Kinetic Modeling and Economic Approach. Energy Fuels 2020, 34, 12626–12633. [Google Scholar] [CrossRef]
- Cuetos, M.; Gómez, X.; Torres, E.J.M.; Fierro, J.; Otero, M. Feasibility of anaerobic co-digestion of poultry blood with maize residues. Bioresour. Technol. 2013, 144, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Zhang, Y.; Li, R.; Nelles, M.; Stinner, W.; Li, Y. Effects of Percolate Recirculation on Dry Anaerobic Co-digestion of Organic Fraction of Municipal Solid Waste and Corn Straw. Energy Fuels 2017, 31, 12183–12191. [Google Scholar] [CrossRef]
- Degueurce, A.; Trémier, A.; Peu, P. Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity. Bioresour. Technol. 2016, 216, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Petracchini, F.; Liotta, F.; Paolini, V.; Perilli, M.; Cerioni, D.; Gallucci, F.; Carnevale, M.; Bencini, A. A novel pilot scale mul-tistage semidry anaerobic digestion reactor to treat food waste and cow manure. Int. J. Environ. Sci. Technol. 2018, 15, 1999–2008. [Google Scholar] [CrossRef]
- Bardi, M.J.; Rad, H.A. Simultaneous synergistic effects of addition of agro-based adsorbent on anaerobic co-digestion of food waste and sewage sludge. J. Mater. Cycles Waste Manag. 2019, 22, 65–79. [Google Scholar] [CrossRef]
- Achi, C.G.; Hassanein, A.; Lansing, S. Enhanced Biogas Production of Cassava Wastewater Using Zeolite and Biochar Additives and Manure Co-Digestion. Energies 2020, 13, 491. [Google Scholar] [CrossRef] [Green Version]
- Cuetos, M.J.; Martinez, E.J.; Moreno, R.; Gonzalez, R.; Otero, M.; Gomez, X. Enhancing anaerobic digestion of poultry blood using activated carbon. J. Adv. Res. 2017, 8, 297–307. [Google Scholar] [CrossRef]
- Cerrillo, M.; Viñas, M.; Bonmatí, A. Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane. Renew. Energy 2018, 120, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Martínez, E.J.; Rosas, J.G.; Sotres, A.; Moran, A.; Cara, J.; Sánchez, M.E.; Gómez, X. Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochem. Eng. J. 2018, 137, 314–325. [Google Scholar] [CrossRef]
- Arenas, C.B.; Meredith, W.; Snape, C.E.; Gómez, X.; González, J.F.; Martinez, E.J. Effect of char addition on anaerobic digestion of animal by-products: Evaluating biogas production and process performance. Environ. Sci. Pollut. Res. 2020, 27, 24387–24399. [Google Scholar] [CrossRef]
- Cui, Y.; Mao, F.; Zhang, J.; He, Y.; Tong, Y.W.; Peng, Y. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways. Chemosphere 2021, 272, 129863. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cai, W.; Guo, Z.; Wang, L.; Yang, C.; Varrone, C.; Wang, A. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production. Renew. Energy 2016, 91, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Moreno, R.; Martínez, E.J.; Escapa, A.; Martínez, O.; Díez-Antolínez, R.; Gómez, X. Mitigation of Volatile Fatty Acid Build-Up by the Use of Soft Carbon Felt Electrodes: Evaluation of Anaerobic Digestion in Acidic Conditions. Fermentation 2018, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Gómez, X.; Cuetos, M.J.; Tartakovsky, B.; Martinez-Nunez, M.F.; Morán, A. A comparison of analytical techniques for eval-uating food waste degradation by anaerobic digestion. Bioprocess Biosyst. Eng. 2010, 33, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Nges, I.A.; Liu, J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew. Energy 2010, 35, 2200–2206. [Google Scholar] [CrossRef]
- Gebreeyessus, G.D.; Jenicek, P. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review. Bioenginering 2016, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.; Petersen, G. Thermophilic anaerobic digestion and pasteurisation. Practical experience from Danish wastewater treatment plants. Water Sci. Technol. 2000, 42, 65–72. [Google Scholar] [CrossRef]
- De Vrieze, J.; Smet, D.; Klok, J.; Colsen, J.; Angenent, L.T.; Vlaeminck, S.E. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresour. Technol. 2016, 218, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Banks, C.J.; Chesshire, M.; Stringfellow, A. A pilot-scale comparison of mesophilic and thermophilic digestion of source segregated domestic food waste. Water Sci. Technol. 2008, 58, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, G.; Fernández, B.; Bonmatí, A. Addition of crude glycerine as strategy to balance the C/N ratio on sewage sludge thermophilic and mesophilic anaerobic co-digestion. Bioresour. Technol. 2015, 193, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, W.; Qin, W.; Sun, C.; Wang, J.; Wen, X. Long-term performance and microbial community characteristics of pilot-scale anaerobic reactors for thermal hydrolyzed sludge digestion under mesophilic and thermophilic conditions. Sci. Total. Environ. 2020, 720, 137566. [Google Scholar] [CrossRef]
- Gómez, X.; Blanco, D.; Lobato, A.; Calleja, A.; Martínez-Núñez, F.; Martin-Villacorta, J. Digestion of cattle manure under mesophilic and thermophilic conditions: Characterization of organic matter applying thermal analysis and 1H NMR. Biogeochemestry 2010, 22, 623–635. [Google Scholar] [CrossRef]
- Provenzano, M.R.; Malerba, A.D.; Buscaroli, A.; Zannoni, D.; Senesi, N. Anaerobic digestion of municipal solid waste and sewage sludge under mesophilic and thermophilic conditions. J. Therm. Anal. Calorim. 2012, 111, 1861–1870. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Sawdust-Derived Biochar Much Mitigates VFAs Accumulation and Improves Microbial Activities To Enhance Methane Production in Thermophilic Anaerobic Digestion. ACS Sustain. Chem. Eng. 2018, 7, 2141–2150. [Google Scholar] [CrossRef]
- Migliori, M.; Catizzone, E.; Giordano, G.; Le Pera, A.; Sellaro, M.; Lista, A.; Zanardi, G.; Zoia, L. Pilot plant data assessment in anaerobic digestion of organic fraction of municipal waste solids. Processes 2019, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to energy: A focus on the impact of substrate type in biogas pro-duction. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Y.; Hu, D.; Fan, J.; Zeng, G. A review on removal of siloxanes from biogas: With a special focus on volatile methylsiloxanes. Environ. Sci. Pollut. Res. 2018, 25, 30847–30862. [Google Scholar] [CrossRef] [PubMed]
- Adnan, A.I.; Ong, M.Y.; Nomanbhay, S.; Chew, K.W.; Show, P.L. Technologies for Biogas Upgrading to Biomethane: A Review. Bioenginering 2019, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Angelidaki, I.; Xie, L.; Luo, G.; Zhang, Y.; Oechsner, H.; Lemmer, A.; Munoz, R.; Kougias, P.G. Biogas Upgrading: Current and Emerging Technologies. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 817–843. [Google Scholar]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of biogas upgrading technologies and future perspectives: A review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- Dezham, P.; Rosenblum, E.; Jenkins, D. Digester gas control using iron salts. J. Water Pollut. Control Fed. 1988, 514–517. [Google Scholar]
- Erdirencelebi, D.; Kucukhemek, M. Control of hydrogen sulphide in full-scale anaerobic digesters using iron (III) chloride: Performance, origin and effects. Water SA 2018, 44, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Schaumann BioEnergy GmbH. BC.ATOX Scon. Available online: https://www.schaumann-bioenergy.com/en/bc_atox_scon.html (accessed on 5 February 2021).
- Schaumann BioEnergy GmbH. BC.ATOX liquid. Available online: https://www.schaumann-bioenergy.com/en/bc_atox_liquid.html (accessed on 5 February 2021).
- Okoro, O.V.; Sun, Z. Desulphurisation of biogas: A systematic qualitative and economic-based quantitative review of alter-native strategies. Chem. Eng. 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Interra Global Corp. H2S Removal Media. Available online: https://www.interraglobal.com/products/other/h2s-removal-media/?gclid=Cj0KCQjw38-DBhDpARIsADJ3kjmluUPQJYhXJh3Ol5ij6uVg485IvgK_90i7wuKPxQ0DitCOTyb_0aAvakEALwwcB (accessed on 10 April 2021).
- KRONOS Ecochem®. Biogas Desulfurisation. Available online: https://kronosecochem.com/en/applications/biogas/biogasentschwefelung-en/ (accessed on 10 April 2021).
- Syed, M.; Soreanu, G.; Falletta, P.; Béland, M. Removal of hydrogen sulfide from gas streams using biological processes: A review. Can. Biosyst. Eng. 2006, 48, 2. [Google Scholar]
- Krayzelova, L.; Bartacek, J.; Díaz, I.; Jeison, D.; Volcke, E.I.P.; Jenicek, P. Microaeration for hydrogen sulfide removal during anaerobic treatment: A review. Rev. Environ. Sci. Bio/Technol. 2015, 14, 703–725. [Google Scholar] [CrossRef]
- Nguyen, D.; Khanal, S.K. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic di-gestion process. Biotechnol. Adv. 2018, 36, 1971–1983. [Google Scholar] [CrossRef] [PubMed]
- Bauer, F.; Persson, T.; Hulteberg, C.; Tamm, D. Biogas upgrading–technology overview, comparison and perspectives for the future. Biofuels Bioprod. Biorefining 2013, 7, 499–511. [Google Scholar] [CrossRef]
- Orlygsson, J.; Scully, S.M. Influence of inhibitory compounds on biofuel production from oxalate-rich rhubarb leaf hydrol-ysates using Thermoanaerobacter thermohydrosulfuricus strain AK91. Fuels 2021, 2, 71–86. [Google Scholar] [CrossRef]
- Di Iorio, S.; Magno, A.; Mancaruso, E.; Vaglieco, B.M. Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode. SAE Tech. Pap. Ser. 2016, 1. [Google Scholar] [CrossRef]
- Abu Mansor, M.R.; Abbood, M.M.; Mohamad, T.I. The influence of varying hydrogen-methane-diesel mixture ratio on the combustion characteristics and emissions of a direct injection diesel engine. Fuel 2017, 190, 281–291. [Google Scholar] [CrossRef]
- Cardone, M.; Marialto, R.; Ianniello, R.; Lazzaro, M.; Di Blasio, G. Spray Analysis and Combustion Assessment of Diesel-LPG Fuel Blends in Compression Ignition Engine. Fuels 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Feng, Q.; Lin, Y. Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review. Renew. Sustain. Energy Rev. 2017, 77, 1272–1287. [Google Scholar] [CrossRef]
- Dussan, K.; Monaghan, R.F.D. Integrated Thermal Conversion and Anaerobic Digestion for Sludge Management in Wastewater Treatment Plants. Waste Biomass Valorization 2017, 9, 65–85. [Google Scholar] [CrossRef]
- Ghysels, S.; Acosta, N.; Estrada, A.; Pala, M.; De Vrieze, J.; Ronsse, F.; Rabaey, K. Integrating anaerobic digestion and slow pyrolysis improves the product portfolio of a cocoa waste biorefinery. Sustain. Energy Fuels 2020, 4, 3712–3725. [Google Scholar] [CrossRef]
- Deng, C.; Lin, R.; Kang, X.; Wu, B.; O’Shea, R.; Murphy, J.D. Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis. Renew. Sustain. Energy Rev. 2020, 128, 109895. [Google Scholar] [CrossRef]
- González-Arias, J.; Gil, M.V.; Fernández, R.Á.; Martínez, E.J.; Fernández, C.; Papaharalabos, G.; Gómez, X. Integrating an-aerobic digestion and pyrolysis for treating digestates derived from sewage sludge and fat wastes. Environ. Sci. Pollut. Res. 2020, 27, 32603–32614. [Google Scholar] [CrossRef]
- Papurello, D.; Gandiglio, M.; Kafashan, J.; Lanzini, A. Biogas Purification: A Comparison of Adsorption Performance in D4 Siloxane Removal Between Commercial Activated Carbons and Waste Wood-Derived Char Using Isotherm Equations. Processes 2019, 7, 774. [Google Scholar] [CrossRef] [Green Version]
- Tinnirello, M.; Papurello, D.; Santarelli, M.; Fiorilli, S. Thermal Activation of Digested Sewage Sludges for Carbon Dioxide Removal from Biogas. Fuels 2020, 1, 30–46. [Google Scholar] [CrossRef]
- Spanish Regulation. Available online: https://www.boe.es/eli/es/res/2018/10/08/(3)) (accessed on 10 February 2021).
- BOE-A-1998-23284. Available online: https://www.boe.es/eli/es/l/1998/10/07/34/con (accessed on 10 April 2021).
- Xu, M.; Lin, B. Exploring the “not in my backyard” effect in the construction of waste incineration power plants—Based on a survey in metropolises of China. Environ. Impact Assess. Rev. 2020, 82, 106377. [Google Scholar] [CrossRef]
- Eurostat. SHARES (Renewables). Available online: https://ec.europa.eu/eurostat/web/energy/data/shares (accessed on 10 April 2021).
- The State of Renewable Energies in Europe. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2020/The-state-of-renewable-energies-in-Europe-2019.pdf (accessed on 10 April 2021).
- García-Cascallana, J.; Gómez, X.; Martinez, E.J. Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Appl. Sci. 2021, 11, 964. [Google Scholar] [CrossRef]
- Barber, W. Thermal hydrolysis for sewage treatment: A critical review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef]
- Li, B.; Romero, A.; Wadhawan, T.; Tobin, M.; Manning, E.; Higgins, M.; Al-Omari, A.; Murthy, S.; Riffat, R.; De Clippeleir, H. Recuperative thickening for sludge retention time and throughput management in anaerobic digestion with thermal hy-drolysis pretreatment. Water Environ. Res. 2020, 92, 465–477. [Google Scholar] [CrossRef]
- García-Cascallana, J.; Borge-Díez, D.; Gómez, X. Enhancing the efficiency of thermal hydrolysis process in wastewater treatment plants by the use of steam accumulation. Int. J. Environ. Sci. Technol. 2019, 16, 3403–3418. [Google Scholar] [CrossRef]
- Available online: https://www.hielscher.com/sludge01.htm (accessed on 10 April 2021).
- Biocrack II. Electrokinetic Disintegration. Available online: https://www.vogelsang.info/int/products/disintegration/biocrack/ (accessed on 15 April 2021).
- Evoqua. Crown™ Disintegration System. Available online: https://www.evoqua.com/en/evoqua/products--services/anaerobic-wastewater-treatment/digestor-components/crown-disintegration-system/ (accessed on 15 April 2021).
- Wang, Q.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ. 2017, 587–588, 510–521. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Wacławek, S.; Grübel, K.; Silvestri, D.; Padil, V.V.T.; Wacławek, M.; Černík, M.; Varma, R.S. Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production. Energies 2018, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.K.; Chaudhary, D.K.; Dahal, R.H.; Trinh, N.H.; Kim, J.; Chang, S.W.; Hong, Y.; La, D.D.; Nguyen, X.C.; Ngo, H.H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Akbulut, A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study. Energy 2012, 44, 381–390. [Google Scholar] [CrossRef]
- Aui, A.; Li, W.; Wright, M.M. Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa. Waste Manag. 2019, 89, 154–164. [Google Scholar] [CrossRef]
- Aryal, N.; Kvist, T. Alternative of Biogas Injection into the Danish Gas Grid System—A Study from Demand Perspective. ChemEngineering 2018, 2, 43. [Google Scholar] [CrossRef] [Green Version]
Material | Contribution | Proposed Model | Reference |
---|---|---|---|
Organic solid wastes | Biogas, hydrogen VFA, lactic acid Nutrient recovery | Co-digestions and multiple product recovery | [17] |
Lipid-rich wastes | Bioenergy | Pre-treatment + biomass retention digestion system | [18] |
Agricultural + livestock wastes | Energy, liquid fuels, mineral fertilizers (struvite), biopolymers, fibers, char | Biorefinery concept | [8] |
Livestock wastes + agricultural residues | Energy, biochar | AD + pyrolysis | [19] |
Food wastes | Biogas | UASB reactor + Natural zeolites | [20] |
Yard wastes | Energy from biogas and hydrochar | Thermal pre-treatment + AD + hydrothermal treatment | [21,22] |
Municipal food wastes (MFW) | Biogas and liquid biofertilizer | Hydromechanical pretreated MFW + AD | [23] |
Sewage sludge | Energy using CHP | AD in WWTP | [6] |
Swine manure | Energy and nutrient recovery (liquid fraction and digestate) | AD | [10] |
Municipal wastes | Recycled material, Biogas, landfill cover | Separate collection system + AD + land fill | [24] |
Digestion Test | OLR (g VS/L d) | mL CH4/g VS | Reference |
---|---|---|---|
Batch digestion | |||
Sewage sludge (SS) | 248.7 ± 4.13 | [72] | |
198.3 | [73] | ||
130.46 ± 8.09 | [74] | ||
287 | [75] | ||
Food wastes (FW) | 491.0 ± 8.79 | [72] | |
475 | [75] | ||
326–497 1 | [29] | ||
OFMSW | 236 | [76] | |
Meadow grass | 388 ± 30 | [70] | |
Cattle manure (CM) | 439 | [73] | |
230 | [77] | ||
160 1 | [77] | ||
Chicken manure | 520 ± 130 | [78] | |
Swine manure (SM) | 298.7 ± 19.7 | [79] | |
202.0 ± 14.2 | [80] | ||
glycerin | 561.3 ± 55.3 | [80] | |
Batch co-digestion | |||
SS + FW | 293–365 | [72] | |
WAS 2 + OFMSW | 162–243 | [81] | |
SS + sludge from brewery | 176–263 | [82] | |
SS + FW leachate | 233–344 | [82] | |
SS + Maize straw | 336–472.3 | [73] | |
SS + CM | 352.3–470.3 | [73] | |
CM + maize straw | 534.8–603.5 | [73] | |
SM + glycerin | 349–467 | [80] | |
Pig manure+ ESBP 3 | 212.4 1 | [30] | |
Continuous operation | |||
SS | 1.1 | 340.3 ± 90 4 | [33] |
3.17 | 327 1 | [83] | |
SM + glycerin | 2–2.9 | 336–423 | [84] |
OFMSW + primary sludge | 4–5 | 375–404 | [85] |
Chicken manure | 3.5 | 53–75.4 | [86] |
Chicken manure + dairy cow manure | 3.7–4.7 5 | 350 ± 110 | [78] |
Solid-phase digestion | |||
Poultry manure | 24.6 | [87] | |
SS + Poultry manure | 56.5 | [87] | |
Chicken manure | 11.5 6 | 52.2 4 | [86] |
Sheep manure | 184 | [88] | |
Sheep manure + potato peels | 323–329 | [88] | |
Pennisetum hybrid | 78.5 | [89] | |
Horse dung | 170 | [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellacuriaga, M.; García-Cascallana, J.; Gómez, X. Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy. Fuels 2021, 2, 144-167. https://doi.org/10.3390/fuels2020009
Ellacuriaga M, García-Cascallana J, Gómez X. Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy. Fuels. 2021; 2(2):144-167. https://doi.org/10.3390/fuels2020009
Chicago/Turabian StyleEllacuriaga, Marcos, José García-Cascallana, and Xiomar Gómez. 2021. "Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy" Fuels 2, no. 2: 144-167. https://doi.org/10.3390/fuels2020009
APA StyleEllacuriaga, M., García-Cascallana, J., & Gómez, X. (2021). Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy. Fuels, 2(2), 144-167. https://doi.org/10.3390/fuels2020009