Modelling of an Anaerobic Digester: Identification of the Main Parameters Influencing the Production of Methane Using the Sobol Method
Abstract
:1. Introduction
2. Kinetic Modelling of Anaerobic Digestion
- The hydrolysis of lipids, carbohydrates, and proteins based on an expression for enzymatic degradation;
- The proposal of differential equations for describing the dynamic state, following the stoichiometrics proposed by Angelidaki [15];
- pH variation depending on the acid/base equilibrium.
3. Analysis of Parameters
3.1. Global Sensitivity Analysis Method
3.2. Sobol Sequence Method
4. Results and Discussion
4.1. Validation of the Model Based on the Experimental Results
4.2. GSA Results
4.3. Analysis of HRT as an Influential Operating Parameter
4.4. Case Study: Influence of Different Main Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
AA | Amino acids |
ac B | Butyric acid |
ac P | Propionic acid |
ac V | Valeric acid |
AD | Anaerobic digester |
ADM1 | Anaerobic Digestion Model No.1 |
Carb | Carbohydrate |
DST | Decision support tool |
GSA | Global sensitivity analysis |
GTO | Glycerol trioleate |
HAc | Acetic acid |
HRT | Hydraulic retention time (day) |
i | Concentration for component i (g·L−1) |
ka,i | Equilibrium constant for the component i (day−1) |
Ki,i | Inhibitor concentration coefficient due to component i (day−1) |
Ks,i | Half saturation coefficient for component i (g·L−1) |
LCFA | Long chain fatty acids |
pHLL | pH Lower Limit for 50% inhibition (according to ADM1 model) |
qliq | Liquid flow rate (L·s−1) |
S | Subtract concentration (g·L−1) |
Si | First-order sensitivity index |
Siint | Interaction sensitivity index |
SiTOT | Total sensitivity index |
STC | Standard thermodynamic conditions (293.15K, 101.325 kPa) |
VFA | Volatile fatty acids (wt%) |
Vliq | Liquid volume (L) |
VS | Volatile solids (wt%) |
Xin,i | Initial concentration of component i (g·L−1) |
Xt,i | Concentration time t for the component i (g·L−1) |
νi,j | Stoichiometric coefficients for component i on the reaction j |
ρj | Kinetic rate equation (g·L−1·s−1) |
pHUL | Upper limit for pH |
μi, | Reactional rate for component i (day−1) |
μi,max | Maximal reactional rate for component i (day−1) |
μmax | Maximal reactional rate (day−1) |
[T-NH3] | Total ammonia concentration (g·L−1) |
References
- Gedminaitė-Raudonė, Ž.; Lankauskienė, R.; Simonaitytė, V. Pathway to Green Transformation in Lithuania: Biogas Production from Manure and Waste. Energies 2022, 15, 2989. [Google Scholar] [CrossRef]
- Weiland, P. Biogas Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Yerassyl, D.; Jin, Y.; Zhanar, S.; Aigul, K.; Saltanat, Y. The Current Status and Lost Biogas Production Potential of Kazakhstan from Anaerobic Digestion of Livestock and Poultry Manure. Energies 2022, 15, 3270. [Google Scholar] [CrossRef]
- Anuta, O.H.; Taylor, P.; Jones, D.; McEntee, T.; Wade, N. An International Review of the Implications of Regulatory and Electricity Market Structures on the Emergence of Grid Scale Electricity Storage. Renew. Sustain. Energy Rev. 2014, 38, 489–508. [Google Scholar] [CrossRef] [Green Version]
- Zerta, M.; Schmidt, P.R.; Stiller, C.; Landinger, H. Alternative World Energy Outlook (AWEO) and the Role of Hydrogen in a Changing Energy Landscape. Int. J. Hydrog. Energy 2008, 33, 3021–3025. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z.; Ishaque, K. Cell Modelling and Model Parameters Estimation Techniques for Photovoltaic Simulator Application: A Review. Appl. Energy 2015, 154, 500–519. [Google Scholar] [CrossRef]
- Ciulla, G.; D’Amico, A.; Di Dio, V.; Lo Brano, V. Modelling and Analysis of Real-World Wind Turbine Power Curves: Assessing Deviations from Nominal Curve by Neural Networks. Renew. Energy 2019, 140, 477–492. [Google Scholar] [CrossRef]
- Murillo-Roos, M.; Uribe-Lorío, L.; Fuentes-Schweizer, P.; Vidaurre-Barahona, D.; Brenes-Guillén, L.; Jiménez, I.; Arguedas, T.; Liao, W.; Uribe, L. Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica. Energies 2022, 15, 3252. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Bonilla-Gómez, J.-L.; Borge-Diez, D.; Castro-Gil, M. Hybridization of Concentrated Solar Power Plants with Biogas Production Systems as an Alternative to Premiums: The Case of Spain. Renew. Sustain. Energy Rev. 2015, 47, 186–197. [Google Scholar] [CrossRef]
- Xie, S.; Hai, F.I.; Zhan, X.; Guo, W.; Ngo, H.H.; Price, W.E.; Nghiem, L.D. Anaerobic Co-Digestion: A Critical Review of Mathematical Modelling for Performance Optimization. Bioresour. Technol. 2016, 222, 498–512. [Google Scholar] [CrossRef]
- Hartmann, H.; Ahring, B.K. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Influence of Co-Digestion with Manure. Water Res. 2005, 39, 1543–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna-delRisco, M.; Normak, A.; Orupõld, K. Biochemical Methane Potential of Different Organic Wastes and Energy Crops from Estonia. Agron. Res. 2011, 9, 331–342. [Google Scholar]
- Lüthi, C. Anaerobic Digestion of Biowaste in Developing Countries Practical Information and Case Studies; Eawag-Sandec: Dübendorf, Switzerland, 2014; ISBN 978-3-906484-58-7. [Google Scholar]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas. Biotechnol. Bioeng. 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Flotats, X.; Palatsi, J.; Ahring, B.K.; Angelidaki, I. Identifiability Study of the Proteins Degradation Model, Based on ADM1, Using Simultaneous Batch Experiments. Water Sci. Technol. 2006, 54, 31–39. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Effects of Free Long-Chain Fatty Acids on Thermophilic Anaerobic Digestion. Appl. Microbiol. Biotechnol. 1992, 37. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Thermophilic Anaerobic Digestion of Livestock Waste: The Effect of Ammonia. Appl. Microbiol. Biotechnol. 1993, 38. [Google Scholar] [CrossRef]
- Blumensaat, F.; Keller, J. Modelling of Two-Stage Anaerobic Digestion Using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res. 2005, 39, 171–183. [Google Scholar] [CrossRef]
- Thamsiriroj, T.; Murphy, J.D. Modelling Mono-Digestion of Grass Silage in a 2-Stage CSTR Anaerobic Digester Using ADM1. Bioresour. Technol. 2011, 102, 948–959. [Google Scholar] [CrossRef]
- Ochoa, M.P.; Estrada, V.; Di Maggio, J.; Hoch, P.M. Dynamic Global Sensitivity Analysis in Bioreactor Networks for Bioethanol Production. Bioresour. Technol. 2016, 200, 666–679. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Remigi, E.; Tack, F.M.G.; Meers, E.; Belia, E.; Vanrolleghem, P.A. Optimizing the Configuration of Integrated Nutrient and Energy Recovery Treatment Trains: A New Application of Global Sensitivity Analysis to the Generic Nutrient Recovery Model (NRM) Library. Bioresour. Technol. 2018, 269, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jiang, X. An Assessment of Fuel Variability Effect on Biogas-Hydrogen Combustion Using Uncertainty Quantification. Int. J. Hydrog. Energy 2018, 43, 12499–12515. [Google Scholar] [CrossRef]
- Eiroa, M.; Costa, J.C.; Alves, M.M.; Kennes, C.; Veiga, M.C. Evaluation of the Biomethane Potential of Solid Fish Waste. Waste Manag. 2012, 32, 1347–1352. [Google Scholar] [CrossRef] [Green Version]
- Gannoun, H.; Othman, N.B.; Bouallagui, H.; Moktar, H. Mesophilic and Thermophilic Anaerobic Co-Digestion of Olive Mill Wastewaters and Abattoir Wastewaters in an Upflow Anaerobic Filter. Ind. Eng. Chem. Res. 2007, 46, 6737–6743. [Google Scholar] [CrossRef]
- Kafle, G.K.; Kim, S.H.; Sung, K.I. Ensiling of Fish Industry Waste for Biogas Production: A Lab Scale Evaluation of Biochemical Methane Potential (BMP) and Kinetics. Bioresour. Technol. 2013, 127, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Elmashad, H.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of Food Waste as Feedstock for Anaerobic Digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Bagi, Z.; Ács, N.; Bálint, B.; Horváth, L.; Dobó, K.; Perei, K.R.; Rákhely, G.; Kovács, K.L. Biotechnological Intensification of Biogas Production. Appl. Microbiol. Biotechnol. 2007, 76, 473–482. [Google Scholar] [CrossRef]
- Brulé, M.; Oechsner, H.; Jungbluth, T. Exponential Model Describing Methane Production Kinetics in Batch Anaerobic Digestion: A Tool for Evaluation of Biochemical Methane Potential Assays. Bioprocess Biosyst. Eng. 2014, 37, 1759–1770. [Google Scholar] [CrossRef]
- Costello, D.J.; Greenfield, P.F.; Lee, P.L. Dynamic Modelling of a Single-Stage High-Rate Anaerobic Reactor—I. Model Derivation. Water Res. 1991, 25, 847–858. [Google Scholar] [CrossRef]
- Han, K.; Levenspiel, O. Extended Monod Kinetics for Substrate, Product, and Cell Inhibition. Biotechnol. Bioeng. 1988, 32, 430–447. [Google Scholar] [CrossRef]
- Bekins, B.A.; Warren, E.; Godsy, E.M. A Comparison of Zero-Order, First-Order, and Monod Biotransformation Models. Ground Water 1998, 36, 261–268. [Google Scholar] [CrossRef]
- Ramirez, I.; Mottet, A.; Carrère, H.; Déléris, S.; Vedrenne, F.; Steyer, J.-P. Modified ADM1 Disintegration/Hydrolysis Structures for Modeling Batch Thermophilic Anaerobic Digestion of Thermally Pretreated Waste Activated Sludge. Water Res. 2009, 43, 3479–3492. [Google Scholar] [CrossRef] [PubMed]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis Kinetics in Anaerobic Degradation of Particulate Organic Material: An Overview. Waste Manag. 2008, 28, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008; ISBN 978-87-992962-0-0. [Google Scholar]
- Miron, Y. The Role of Sludge Retention Time in the Hydrolysis and Acidification of Lipids, Carbohydrates and Proteins during Digestion of Primary Sludge in CSTR Systems. Water Res. 2000, 34, 1705–1713. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A Mathematical Model for Dynamic Simulation of Anaerobic Digestion of Complex Substrates: Focusing on Ammonia Inhibition. Biotechnol. Bioeng. 1993, 42, 159–166. [Google Scholar] [CrossRef]
- Serrano, R.P. Biogas Process Simulation Using Aspen Plus; Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark: Odense, Denmark, 2011. [Google Scholar]
- Sun, H.; Wu, S.; Dong, R. Monitoring Volatile Fatty Acids and Carbonate Alkalinity in Anaerobic Digestion: Titration Methodologies. Chem. Eng. Technol. 2016, 39, 599–610. [Google Scholar] [CrossRef]
- Shi, E.; Li, J.; Zhang, M. Application of IWA Anaerobic Digestion Model No. 1 to Simulate Butyric Acid, Propionic Acid, Mixed Acid, and Ethanol Type Fermentative Systems Using a Variable Acidogenic Stoichiometric Approach. Water Res. 2019, 161, 242–250. [Google Scholar] [CrossRef]
- Ahring, B.K. (Ed.) Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-540-44322-3. [Google Scholar]
- Sobol’, I.M. Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Angelidaki, I.; Sanders, W. Assessment of the Anaerobic Biodegradability of Macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- Kafle, G.K.; Kim, S.H. Evaluation of the Biogas Productivity Potential of Fish Waste: A Lab Scale Batch Study. J. Biosyst. Eng. 2012, 37, 302–313. [Google Scholar] [CrossRef] [Green Version]
Conversion | Rate Law (Day−1) |
---|---|
Acidogenesis step (Amino acid degradation) | |
Acidogenesis step (Glucose degradation) | |
Acidogenesis step (Lipolytic degradation) | |
Acetogenesis step (VFA–Propionate acid, butyrate acid, valerate acid degradation) | |
Acetogenesis step (LCFA degradation) | |
Methanogenesis step |
Intermediate Molecule | Equilibrium | Equilibrium Expression |
---|---|---|
Ammonium | ||
Acetic acid | ||
Propionic acid | ||
Butiryc acid | ||
Valeric acid |
Parameter | Lower Limit | Upper Limit | Reference | |
---|---|---|---|---|
Operating parameter | HRT (day) | 1 | 60 | [26] |
Acidity (pH) | 6.5 | 8.5 | [26] | |
Temperature (K) | 318.15 | 338.15 | [11] | |
Substrate composition | Lipids (g·L−1) | 0 | 10 | [44] |
Carbohydrates (g·L−1) | 0 | 10 | [44] | |
Proteins (g·L−1) | 0 | 10 | [44] |
Case 1 | Case 2 | Case 3 | ||
---|---|---|---|---|
Operating parameters | HRT (Day) | 24.3 | 24.3 | 46.3 |
pH | 7.0 | 7.0 | 7.0 | |
Temperature (°C) | 50 | 55 | 55 | |
Composition of feedstock | Lipid (g·L−1) | 4.7 | 4.7 | 4.7 |
Carbohydrates (g·L−1) | 0.0 | 0.0 | 0.0 | |
Protein (g·L−1) | 4.0 | 4.0 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, A.; Vernieres-Hassimi, L.; Abdelouahed, L.; Taouk, B.; Mohabeer, C.; Estel, L. Modelling of an Anaerobic Digester: Identification of the Main Parameters Influencing the Production of Methane Using the Sobol Method. Fuels 2022, 3, 436-448. https://doi.org/10.3390/fuels3030027
Martinez A, Vernieres-Hassimi L, Abdelouahed L, Taouk B, Mohabeer C, Estel L. Modelling of an Anaerobic Digester: Identification of the Main Parameters Influencing the Production of Methane Using the Sobol Method. Fuels. 2022; 3(3):436-448. https://doi.org/10.3390/fuels3030027
Chicago/Turabian StyleMartinez, Andres, Lamiae Vernieres-Hassimi, Lokmane Abdelouahed, Bechara Taouk, Chetna Mohabeer, and Lionel Estel. 2022. "Modelling of an Anaerobic Digester: Identification of the Main Parameters Influencing the Production of Methane Using the Sobol Method" Fuels 3, no. 3: 436-448. https://doi.org/10.3390/fuels3030027
APA StyleMartinez, A., Vernieres-Hassimi, L., Abdelouahed, L., Taouk, B., Mohabeer, C., & Estel, L. (2022). Modelling of an Anaerobic Digester: Identification of the Main Parameters Influencing the Production of Methane Using the Sobol Method. Fuels, 3(3), 436-448. https://doi.org/10.3390/fuels3030027