Standard-Compliant Gasoline by Upgrading a DTG-Based Fuel through Hydroprocessing the Heavy-Ends and Blending of Oxygenates
Abstract
:1. Introduction
1.1. Requirements for Synthetic Gasoline to Meet EN 228
1.2. Synthesis Gas-Based Renewable Gasoline Supply and Associated Challenges
1.2.1. Fischer–Tropsch
1.2.2. Methanol and Dimethyl Ether to Gasoline
1.2.3. Suitability of MTG and DTG for Providing Drop-In and Stand-Alone Fuels
1.3. The Potential of Oxygenates in Blending and Associated Challenges
2. Materials and Methods
3. Results and Discussion
3.1. Influence of Hydroprocessing on Boiling Characteristics and Vapor Pressure
3.2. Influence of Oxygenates on Boiling Characteristics and Vapor Pressure
3.3. Expanded Blending Concept
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission of the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: ‘Fit for 55’: Delivering the EU’s 2030 Climat Target on the way to climate neutrality; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Sean Goulding Carroll. EU Deal on Car CO2 Standards Leaves Door Ajar for e-Fuels. Available online: https://www.euractiv.com/section/alternative-renewable-fuels/news/eu-deal-on-car-co2-standards-leaves-door-ajar-for-e-fuels/ (accessed on 7 July 2022).
- Abnett, K. EU Approves Effective Ban on New Fossil Fuel Cars from 2035. Available online: https://www.reuters.com/markets/europe/eu-approves-effective-ban-new-fossil-fuel-cars-2035-2022-10-27/ (accessed on 25 November 2022).
- Jonathan, M.G. No New Combustion-Engine Cars From 2035, Says European Union. Available online: https://arstechnica.com/cars/2022/10/eu-agrees-to-ban-new-combustion-engine-cars-from-2035/ (accessed on 25 November 2022).
- International Energy Agency (IEA). Global EV Outlook 2022: Securing Supplies for an Electric Future; IEA: Paris, France, 2022. [Google Scholar]
- European Automobile Manufacturers’ Association (ACEA). Vehicles in Use Europe 2023; ACEA: Brussels, Belgium, 2023. [Google Scholar]
- Randall, C. VW to Phase Out Combustion Vehicles by 2035. Available online: https://www.electrive.com/2021/06/27/vw-to-phase-out-combustion-vehicles-by-2035/ (accessed on 27 January 2023).
- Surisetty, V.R.; Dalai, A.K.; Kozinski, J. Alcohols as alternative fuels: An overview. Appl. Catal. A 2011, 404, 1–11. [Google Scholar] [CrossRef]
- Jeuland, N.; Montagne, X.; Gautrot, X. Potentiality of Ethanol as a Fuel for Dedicated Engine. Oil Gas Sci. Technol. 2004, 59, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Munsin, R.; Laoonual, Y.; Jugjai, S.; Imai, Y. An experimental study on performance and emissions of a small SI engine generator set fuelled by hydrous ethanol with high water contents up to 40%. Fuel 2013, 106, 586–592. [Google Scholar] [CrossRef]
- Jafari, H.; Idris, M.H.; Ourdjini, A.; Rahimi, H.; Ghobadian, B. EIS study of corrosion behavior of metallic materials in ethanol blended gasoline containing water as a contaminant. Fuel 2011, 90, 1181–1187. [Google Scholar] [CrossRef]
- Stappen, H.-J.; Gräve, P. eFuels Pilot Plant in Chile Officially Opened. Available online: https://newsroom.porsche.com/en/2022/company/porsche-highly-innovative-fuels-hif-opening-efuels-pilot-plant-haru-oni-chile-synthetic-fuels-30732.html (accessed on 27 January 2023).
- DIN Deutsches Institut für Normung e. V. Automotive Fuels–Unleaded Petrol–Requirements and Test Methods; German Version EN 228:2012+A1:2017; Beuth Verlag GmbH: Berlin, Germany, 2017. [Google Scholar]
- Federal Office for Agriculture and Food. Evaluation and Progress Report 2020; Federal Office for Agriculture and Food: Bonn, Germany, 2021. [Google Scholar]
- Turdera, M.V. Energy balance, forecasting of bioelectricity generation and greenhouse gas emission balance in the ethanol production at sugarcane mills in the state of Mato Grosso do Sul. Renew. Sustain. Energy Rev. 2013, 19, 582–588. [Google Scholar] [CrossRef]
- Ghosh, P.; Hickey, K.J.; Jaffe, S.B. Development of a Detailed Gasoline Composition-Based Octane Model. Ind. Eng. Chem. Res. 2006, 45, 337–345. [Google Scholar] [CrossRef]
- Jiang, Y.; Phillips, S.D.; Singh, A.; Jones, S.B.; Gaspar, D.J. Potential economic values of low-vapor-pressure gasoline-range bio-blendstocks: Property estimation and blending optimization. Fuel 2021, 297, 120759. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill: New York, NY, USA, 1988; ISBN 0071004998. [Google Scholar]
- Milpied, J.; Jeuland, N.; Plassat, G.; Guichaous, S.; Dioc, N.; Marchal, A.; Schmelzle, P. Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine: Focus on Octane Numbers and Latent Heat of Vaporization. SAE Int. J. Fuels Lubr. 2009, 2, 118–126. [Google Scholar] [CrossRef]
- da Silva, R.; Cataluña, R.; de Menezes, E.W.; Samios, D.; Piatnicki, C.M.S. Effect of additives on the antiknock properties and Reid vapor pressure of gasoline. Fuel 2005, 84, 951–959. [Google Scholar] [CrossRef]
- Santikunaporn, M.; Alvarez, W.E.; Resasco, D.E. Ring contraction and selective ring opening of naphthenic molecules for octane number improvement. Appl. Catal. A 2007, 325, 175–187. [Google Scholar] [CrossRef]
- Morgan, T.D.B.; den Otter, G.J.; Lange, W.W.; Doyon, J.; Barnes, J.R.; Yamashita, T. An Integrated Study of the Effects of Gasoline Composition on Exhaust Emissions Part I: Programme Outline and Results on Regulated Emissions. SAE Tech. Pap. 1993, 932678, 1–18. [Google Scholar] [CrossRef]
- Petit, A.; Montagne, X. Effects of the Gasoline Composition on Exhaust Emissions of Regulated and Speciated Pollutants. SAE Tech. Pap. 1993, 932681, 1–11. [Google Scholar] [CrossRef]
- Nakakita, K.; Ban, H.; Takasu, S.; Hotta, Y.; Inagaki, K.; Weissman, W.; Farrell, J.T. Effect of Hydrocarbon Molecular Structure in Diesel Fuel on In-Cylinder Soot Formation and Exhaust Emissions. SAE Int. J. Fuels Lubr. 2003, 112, 1763–1775. [Google Scholar] [CrossRef]
- Meyers, R.A. Handbook of Petroleum Refining Processes, 3rd ed.; McGraw-Hill: New York, NY, USA, 2003; ISBN 978-0-07-139109-2. [Google Scholar]
- Bruno, T.J.; Wolk, A.; Naydich, A. Composition-Explicit Distillation Curves for Mixtures of Gasoline with Four-Carbon Alcohols (Butanols). Energy Fuels 2009, 23, 2295–2306. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Talmadge, M.; Dutta, A.; Hensley, J.; Snowden-Swan, L.J.; Humbird, D.; Schaidle, J.; Biddy, M. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates. Biofuels Bioprod. Bioref. 2016, 10, 17–35. [Google Scholar] [CrossRef]
- Calcote, H.F.; Manos, D.M. Effect of Molecular Structure on Incipient Soot Formation. Combust. Flame 1983, 49, 289–304. [Google Scholar] [CrossRef]
- Furey, R.L.; King, J.B. Emissions, Fuel Economy, and Driveability Effects of Methanol/Butanol/Gasoline Fuel Blends. SAE Tech. Pap. 1982, 821188, 47–59. [Google Scholar] [CrossRef]
- Yanowitz, J.; Christensen, E.; McCormick, R.L. Utilization of Renewable Oxygenates as Gasoline Blending Components, Technical Report NREL/TP-5400-50791; National Renewable Energy Laboratory: Colorado, CO, USA, 2011. [Google Scholar]
- Aikawa, K.; Sakurai, T.; Jetter, J.J. Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions. SAE Int. J. Fuels Lubr. 2010, 3, 610–622. [Google Scholar] [CrossRef]
- Jess, A.; Wasserscheid, P. Chemical Technology: An Integral Textbook; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; ISBN 978-3-527-30446-2. [Google Scholar]
- Duvenhage, D.J.; Shingles, T. Synthol reactor technology development. Catal. Today 2002, 71, 301–305. [Google Scholar] [CrossRef]
- Steynberg, A.P.; Espinoza, R.L.; Jager, B.; Vosloo, A.C. High temperature Fischer–Tropsch synthesis in commercial practice. Appl. Catal. A 1999, 186, 41–54. [Google Scholar] [CrossRef]
- Kamara, B.I.; Coetzee, J. Overview of High-Temperature Fischer−Tropsch Gasoline and Diesel Quality. Energy Fuels 2009, 23, 2242–2247. [Google Scholar] [CrossRef]
- Dry, M.E. High quality diesel via the Fischer-Tropsch process–a review. J. Chem. Technol. Biotechnol. 2002, 77, 43–50. [Google Scholar] [CrossRef]
- Meurer, A.; Kern, J. Fischer–Tropsch Synthesis as the Key for Decentralized Sustainable Kerosene Production. Energies 2021, 14, 1836. [Google Scholar] [CrossRef]
- Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection. PtL Roadmap: Sustainable Aviation Fuel from Renewable Energy Sources for Aviation in Germany; Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection: Bonn, Germany, 2021. [Google Scholar]
- Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A 1999, 186, 3–12. [Google Scholar] [CrossRef]
- Chang, C.D.; Silvestri, A.J. The Conversion of Methanol and Other O-Compounds to Hydrocarbons over Zeolite Catalysts. J. Catal. 1977, 47, 249–259. [Google Scholar] [CrossRef]
- Olsbye, U.; Svelle, S.; Bjørgen, M.; Beato, P.; Janssens, T.V.W.; Joensen, F.; Bordiga, S.; Lillerud, K.P. Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angew. Chem. Int. Ed. 2012, 51, 5810–5831. [Google Scholar] [CrossRef]
- Teketel, S.; Olsbye, U.; Lillerud, K.-P.; Beato, P.; Svelle, S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Microporous Mesoporous Mater. 2010, 136, 33–41. [Google Scholar] [CrossRef]
- Chang, C.D. The New Zealand Gas-to-Gasoline plant: An engineering tour de force. Catal. Today 1992, 13, 103–111. [Google Scholar] [CrossRef]
- Topp-Jørgensen, J. Topsøe Integrated Gasoline Synthesis–The Tigas Process. Stud. Surf. Sci. Catal. 1988, 36, 293–305. [Google Scholar] [CrossRef]
- Dahmen, N.; Abeln, J.; Eberhard, M.; Kolb, T.; Leibold, H.; Sauer, J.; Stapf, D.; Zimmerlin, B. The bioliq process for producing synthetic transportation fuels. Wiley Interdiscip. Rev. Energy Environ. 2017, 6, e236. [Google Scholar] [CrossRef]
- Dahmen, N.; Dinjus, E.; Kolb, T.; Arnold, U.; Leibold, H.; Stahl, R. State of the Art of the Bioliq® Process for Synthetic Biofuels Production. Environ. Prog. Sustain. Energy 2012, 31, 176–181. [Google Scholar] [CrossRef]
- Pfitzer, C.; Dahmen, N.; Tröger, N.; Weirich, F.; Sauer, J.; Günther, A.; Müller-Hagedorn, M. Fast Pyrolysis of Wheat Straw in the Bioliq® Pilot Plant. Energy Fuels 2016, 30, 8047–8054. [Google Scholar] [CrossRef]
- Trippe, F.; Fröhling, M.; Schultmann, F.; Stahl, R.; Henrich, E. Techno-Economic Analysis of Fast Pyrolysis as a Process Step Within Biomass-to-Liquid Fuel Production. Waste Biomass Valorization 2010, 1, 415–430. [Google Scholar] [CrossRef]
- Dahmen, N.; Henrich, E.; Dinjus, E.; Weirich, F. The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy Sustain. Soc. 2012, 2, 3. [Google Scholar] [CrossRef]
- Ahmad, R.; Schrempp, D.; Behrens, S.; Sauer, J.; Döring, M.; Arnold, U. Zeolite-based bifunctional catalysts for the single step synthesis of dimethyl ether from CO-rich synthesis gas. Fuel Process. Technol. 2014, 121, 38–46. [Google Scholar] [CrossRef]
- Stiefel, M.; Ahmad, R.; Arnold, U.; Döring, M. Direct synthesis of dimethyl ether from carbon-monoxide-rich synthesis gas: Influence of dehydration catalysts and operating conditions. Fuel Process. Technol. 2011, 92, 1466–1474. [Google Scholar] [CrossRef]
- Zimmermann, M.C.; Otto, T.N.; Wodarz, S.; Zevaco, T.A.; Pitter, S. Mesoporous H-ZSM-5 for the Conversion of Dimethyl Ether to Hydrocarbons. Chem. Ing. Tech. 2019, 91, 1302–1313. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, K.; Asami, K.; Saima, H.; Shikada, T.; Tominaga, H.-O. Two-Stage Reaction System for Synthesis Gas Conversion to Gasoline. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 262–267. [Google Scholar] [CrossRef]
- Michler, T.; Wippermann, N.; Toedter, O.; Niethammer, B.; Otto, T.; Arnold, U.; Pitter, S.; Koch, T.; Sauer, J. Gasoline from the bioliq® process: Production, characterization and performance. Fuel Process. Technol. 2020, 206, 106476. [Google Scholar] [CrossRef]
- Liederman, D.; Yurchak, S.; Kuo, J.C.W.; Lee, W. Mobil Methanol-to-Gasoline Process. J. Energy 1982, 6, 340–341. [Google Scholar] [CrossRef]
- Do, P.T.M.; Crossley, S.; Santikunaporn, M.; Resasco, D.E. Catalytic strategies for improving specific fuel properties. Catalysis 2007, 20, 33–64. [Google Scholar] [CrossRef] [Green Version]
- McEnally, C.S.; Pfefferle, L.D. Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways. Combust. Flame 2007, 148, 210–222. [Google Scholar] [CrossRef]
- Mokrani, T.; Scurrell, M. Gas Conversion to Liquid Fuels and Chemicals: The Methanol Route-Catalysis and Processes Development. Catal. Rev. 2009, 51, 1–145. [Google Scholar] [CrossRef]
- Graf, D.; Neuner, P.; Rauch, R. Hydroprocessing and Blending of a Biomass-Based DTG-Gasoline. Energy Eng. 2022, 119, 2169–2192. [Google Scholar] [CrossRef]
- Serrano, D.P.; Melero, J.A.; Morales, G.; Iglesias, J.; Pizarro, P. Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catal. Rev. 2017, 60, 1–70. [Google Scholar] [CrossRef]
- Andersen, V.F.; Anderson, J.E.; Wallington, T.J.; Mueller, S.A.; Nielsen, O.J. Distillation Curves for Alcohol−Gasoline Blends. Energy Fuels 2010, 24, 2683–2691. [Google Scholar] [CrossRef]
- Chen, Y.; Yihao Zhang, Y.; Cheng, W.K. Effects of Ethanol Evaporative Cooling on Particulate Number Emissions in GDI Engines. SAE Tech. Pap. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Kubic, W.L. A Group Contribution Method for Estimating Cetane and Octane Numbers LA-UR-16-25529; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2016. [Google Scholar]
- Michalopoulou, D.-P.; Komiotou, M.; Zannikou, Y.; Karonis, D. Impact of Bio-Ethanol, Bio-ETBE Addition on the Volatility of Gasoline with Oxygen Content at the Level of E10. Fuels 2021, 2, 501–520. [Google Scholar] [CrossRef]
- Bozzano, G.; Manenti, F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Prog. Energy Combust. Sci. 2016, 56, 71–105. [Google Scholar] [CrossRef]
- Taljaard, H.C.; Jordaan, C.F.P.; Botha, J.J. The Effect of Oxygen Content in Different Oxygenate-Gasoline Blends on Performance and Emissions in a Single Cylinder, Spark-Ignition Engine. SAE Tech. Pap. 1991, 910379, 1–17. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratcliff, M.A.; Windom, B.; Fioroni, G.M.; St. John, P.; Burke, S.; Burton, J.; Christensen, E.D.; Sindler, P.; McCormick, R.L. Impact of ethanol blending into gasoline on aromatic compound evaporation and particle emissions from a gasoline direct injection engine. Appl. Energy 2019, 250, 1618–1631. [Google Scholar] [CrossRef]
- Stein, R.A.; House, C.J.; Leone, T.G. Optimal Use of E85 in a Turbocharged Direct Injection Engine. SAE Int. J. Fuels Lubr. 2009, 2, 670–682. [Google Scholar] [CrossRef]
- He, X.; Ratcliff, M.A.; Zigler, B.T. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions. Energy Fuels 2012, 26, 2014–2027. [Google Scholar] [CrossRef]
- Ketterer, J.E.; Cheng, W.K. On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle. SAE Int. J. Engines 2014, 7, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Karonis, D.; Anastopoulos, G.; Lois, E.; Stournas, S. Impact of Simultaneous ETBE and Ethanol Addition on Motor Gasoline Properties. SAE Int. J. Fuels Lubr. 2009, 1, 1584–1594. [Google Scholar] [CrossRef]
- ASTM D7345; Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure (Micro Distillation Method). ASTM International: West Conshohocken, PA, USA, 2017.
- Neuner, P.; Graf, D.; Mild, H.; Rauch, R. Catalytic Hydroisomerisation of Fischer–Tropsch Waxes to Lubricating Oil and Investigation of the Correlation between Its Physical Properties and the Chemical Composition of the Corresponding Fuel Fractions. Energies 2021, 14, 4202. [Google Scholar] [CrossRef]
- ASTM D6378; Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products, Hydrocarbons, and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Method). ASTM International: West Conshohocken, PA, USA, 2020.
- Smith, B.L.; Bruno, T.J. Improvements in the Measurement of Distillation Curves. 3. Application to Gasoline and Gasoline + Methanol Mixtures. Ind. Eng. Chem. Res. 2007, 46, 297–309. [Google Scholar] [CrossRef]
- Petre, M.N.; Rosca, P.; Dragomir, R.-E. The Effect of Bio-ethers on the Volatility Properties of Oxygenated Gasoline. Rev. Chim. 2011, 62, 567–574. [Google Scholar]
- Furey, R.L.; Perry, K.L. Vapor Pressures of Mixtures of Gasolines and Gasoline-Alcohol Blends. SAE Int. J. Fuels Lubr. 1986, 95, 779–789. [Google Scholar] [CrossRef]
- Domańska, U.; Żołek-Tryznowska, Z.; Tshibangu, M.M.; Ramjugernath, D.; Letcher, T.M. Separation of an Alcohol and a Tetrahydrofuran, Methyl tert -Butyl Ether, or Ethyl tert -Butyl Ether by Solvent Extraction with a Hyperbranched Polymer at T = 298.15 K. J. Chem. Eng. Data 2010, 55, 2879–2885. [Google Scholar] [CrossRef]
Methanol | Ethanol | MTBE | ETBE | Gasoline | |
---|---|---|---|---|---|
RON [-] | 122 | 111 | 118 | 118 | ≥95 |
MON [-] | 93 | 96 | 101 | 102 | ≥85 |
Tb [°C] | 64.6 | 78.4 | 55.2 | 73.0 | ≤210 |
HoV [kJ kg−1] | 1170 | 921 | 338 | 290 | ≈335–350 |
O2-content [wt.%] | 49.9 | 34.7 | 18.2 | 15.7 | none |
Renewable share [wt.%] | 100 | 100 | 35.21 | 44.10 | 0 |
Parameter | EN 228 [14] | bioliq® LG | bioliq® HG-HP @ 270 °C | bioliq® HG-HP @ 310 °C | bioliq® HG-HP @ 330 °C | FT-HP |
---|---|---|---|---|---|---|
RON [-] | ≥95 | 102.0 ± 2.7 | 76.9 ± 2.7 | 75.9 ± 2.7 | 77.0 ± 2.7 | 79.9 ± 2.7 |
MON [-] | ≥85 | 91.2 ± 1.0 | 79.6 ± 1.0 | 77.4 ± 1.0 | 77.0 ± 1.0 | 73.9 ± 1.0 |
ρ 1 @ 15 °C [kg m−3] | 720–775 | 835.02 ± 0.05 | n.A. | n.A. | n.A. | n.A. |
ρ 1 @ 20 °C [kg m−3] | - | 829.30 ± 0.05 | 782.78 ± 0.05 | 753.86 ± 0.05 | 731.20 ± 0.05 | 673.03 ± 0.05 |
pv 1 (Class A) [kPa] | 45–60 | 23.0 ± 2.0 | 10.0 ± 2.0 | 36.0 ± 2.0 | 41.0 ± 2.0 | n.A. |
E70 1 (Class A) [vol.%] | 22–50 | 1.1 ± 0.9 | 0.0 | 5.5 ± 0.9 | 14.7 ± 0.9 | 35.1 ± 0.9 |
E100 1 (Class A) [vol.%] | 46–72 | 8.0 ± 0.8 | 1.2 ± 0.8 | 20.1 ± 0.8 | 37.6 ± 0.8 | 67.9 ± 0.8 |
E150 1 (Class A) [vol.%] | 75 | 90.7 ± 0.6 | 39.5 ± 0.6 | 66.0 ± 0.6 | 81.7 ± 0.6 | 96.4 ± 0.6 |
FBP 1 [°C] | ≤210 | 163.0 ± 2.0 | 163.0 ± 2.0 | 163.0 ± 2.0 | 163.0 ± 2.0 | 168.0 ± 2.0 |
φBenzene 1 [vol.%] | ≤1 | 1.4 ± 0.7 | 0.0 | 0.2 ± 0.7 | 0.0 | 0.0 |
φOlefins 1 [ vol.%] | ≤18 | 2.3 ± 0.1 | 0.1 ± 0.1 | 0.0 | 0.0 | 0.0 |
φNaphthenes 1 [vol.%] | - | 5.5 ± 0.1 | 96.2 ± 0.1 | 79.6 ± 0.1 | 67.0 ± 0.1 | 4.5 ± 0.1 |
φParaffins1 [vol.%] | - | 15.3 ± 0.6 | 3.2 ± 0.6 | 18.8 ± 0.6 | 32.5 ± 0.6 | 95.5 ± 0.6 |
φAromatics1 [ vol.%] | ≤35 | 76.9 ± 0.7 | 0.5 ± 0.7 | 1.6 ± 0.7 | 0.4 ± 0.7 | 0.1 ± 0.7 |
Volume Fraction [%] | bioliq® LG | HG-HP@330 °C | FT-HP | Methanol | Ethanol | ETBE |
---|---|---|---|---|---|---|
Blend A | 42.8 | 14.6 | 33.7 | 3.0 | 5.9 | 0.0 |
Blend B | 42.7 | 14.5 | 21.2 | 3.1 | 0.0 | 18.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graf, D.; Neuner, P.; Rauch, R. Standard-Compliant Gasoline by Upgrading a DTG-Based Fuel through Hydroprocessing the Heavy-Ends and Blending of Oxygenates. Fuels 2023, 4, 156-173. https://doi.org/10.3390/fuels4020010
Graf D, Neuner P, Rauch R. Standard-Compliant Gasoline by Upgrading a DTG-Based Fuel through Hydroprocessing the Heavy-Ends and Blending of Oxygenates. Fuels. 2023; 4(2):156-173. https://doi.org/10.3390/fuels4020010
Chicago/Turabian StyleGraf, David, Philipp Neuner, and Reinhard Rauch. 2023. "Standard-Compliant Gasoline by Upgrading a DTG-Based Fuel through Hydroprocessing the Heavy-Ends and Blending of Oxygenates" Fuels 4, no. 2: 156-173. https://doi.org/10.3390/fuels4020010
APA StyleGraf, D., Neuner, P., & Rauch, R. (2023). Standard-Compliant Gasoline by Upgrading a DTG-Based Fuel through Hydroprocessing the Heavy-Ends and Blending of Oxygenates. Fuels, 4(2), 156-173. https://doi.org/10.3390/fuels4020010