Recent Advances in Oxa-6π Electrocyclization Reactivity for the Synthesis of Privileged Natural Product Scaffolds
Abstract
:1. Introduction
2. Discussion
2.1. 6π-Electrocyclization/Diels−Alder Cycloaddition Cascade: The Domino Effect
2.2. Tandem Sequences Geared towards Oxa-6π Electrocyclization Reactivity
2.3. Strained Cyclic Oxatriene Involved in “Transannular” Oxa-6π Electrocyclization
3. Outlook
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiest, O.; Houk, K.N. Density Functional Theory IV, 1st ed.; Series: Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–24. [Google Scholar]
- Marvell, E.N. Thermal Electrocyclic Reactions; Academic Press: New York, NY, USA, 1980; Volume 43. [Google Scholar]
- Ansari, F.L.; Qureshi, R.; Qureshi, M.L. Electrocyclic Reactions; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels–Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed. 2002, 41, 1668–1698. [Google Scholar] [CrossRef]
- Jones, A.C.; May, J.A.; Sarpong, R.; Stoltz, B.M. Toward a Symphony of Reactivity: Cascades Involving Catalysis and Sigmatropic Rearrangements. Angew. Chem. Int. Ed. 2014, 53, 2556–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudry, C.M.; Malerich, A.J.P.; Trauner, D. Biosynthetic and Biomimetic Electrocyclizations. Chem. Rev. 2005, 105, 4757–4778. [Google Scholar] [CrossRef] [PubMed]
- Bian, M.; Li, L.; Ding, H. Recent Advances on the Application of Electrocyclic Reactions in Complex Natural Product Synthe-sis. Synthesis 2017, 49, 4383–4413. [Google Scholar] [CrossRef]
- Sheikh, N.S. 4π electrocyclisation in domino processes: Contemporary trends and synthetic applications towards natural products. Org. Biomol. Chem. 2015, 13, 10774–10796. [Google Scholar] [CrossRef]
- Vargas, D.F.; Larghi, E.L.; Kaufman, T.S. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields. Nat. Prod. Rep. 2018, 36, 354–401. [Google Scholar] [CrossRef] [PubMed]
- Derewacz, D.K.; Covington, B.; McLean, J.A.; Bachmann, B.O. Mapping Microbial Response Metabolomes for Induced Natural Product Discovery. ACS Chem. Biol. 2015, 10, 1998–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaou, K.C.; Pfefferkorn, J.A.; Roecker, A.J.; Cao, G.-Q.; Barluenga, S.; Mitchell, H.J. Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans. J. Am. Chem. Soc. 2000, 122, 9939–9953. [Google Scholar] [CrossRef]
- Tejedor, D.; Delgado-Hernández, S.; Diana-Rivero, R.; Díaz-Díaz, A.; García-Tellado, F. Recent Advances in the Synthesis of 2H-Pyrans. Molecules 2019, 24, 2904. [Google Scholar] [CrossRef] [Green Version]
- Bishop, L.M.; Winkler, M.; Houk, K.N.; Bergman, R.G.; Trauner, D. Mechanistic Investigations of the Acid-Catalyzed Cyclization of a Vinyl ortho-Quinone Methide. Chem. Eur. J. 2008, 14, 5405–5408. [Google Scholar] [CrossRef]
- Krasnaya, Z.A. Dienone ⇄ 2H-pyran valence isomerization. Chem. Heterocycl. Comp. 1999, 35, 1255–1271. [Google Scholar] [CrossRef]
- Tsuda, T.; Kiyoi, T.; Miyane, T.; Saegusa, T. Nickel(0)-catalyzed reaction of diynes with aldehydes. J. Am. Chem. Soc. 1988, 110, 8570–8572. [Google Scholar] [CrossRef]
- Lillya, C.P.; Kluge, A.F. Molecular spectra and conformations of conjugated dienones. J. Org. Chem. 1971, 36, 1977–1988. [Google Scholar] [CrossRef]
- Gosink, T.A. Valence isomers. Substituent effects on the equilibrium between 2H-pyrans and cis-dienones. J. Org. Chem. 1974, 39, 1942–1944. [Google Scholar] [CrossRef]
- Peng, W.; Hirabaru, T.; Kawafuchi, H.; Inokuchi, T. Substituent-Controlled Electrocyclization of 2,4-Dienones: Synthesis of 2,3,6-Trisubstituted 2H-Pyran-5-carboxylates and Their Transformations. Eur. J. Org. Chem. 2011, 2011, 5469–5474. [Google Scholar] [CrossRef]
- Menz, H.; Kirsch, S.F. Synthesis of Stable 2H-Pyran-5-carboxylates via a Catalyzed Propargyl-Claisen Rearrangement/Oxa-6π Electrocyclization Strategy. Org. Lett. 2006, 8, 4795–4797. [Google Scholar] [CrossRef]
- Tejedor, D.; Delgado-Hernández, S.; Peyrac, J.; González-Platas, J.; García-Tellado, F. Integrative Pericyclic Cascade: An Atom Economic, Multi C−C Bond-Forming Strategy for the Construction of Molecular Complexity. Chem. A Eur. J. 2017, 23, 10048–10052. [Google Scholar] [CrossRef] [PubMed]
- Bankura, A.; Naskar, S.; Chowdhury, S.R.; Maity, R.; Mishra, S.; Das, I. C 3 -Thioester/-Ester Substituted Linear Dienones: A Pluripotent Molecular Platform for Diversification via Cascade Pericyclic Reactions. Adv. Synth. Catal. 2020, 362, 3604–3612. [Google Scholar] [CrossRef]
- Lee, J.C.; Strobel, G.A.; Lobkovsky, E.; Clardy, J. Torreyanic Acid: A Selectively Cytotoxic Quinone Dimer from the Endophytic Fungus Pestalotiopsis microspora. J. Org. Chem. 1996, 61, 3232–3233. [Google Scholar] [CrossRef]
- Li, C.; Lobkovsky, E.; Porco, J.A. Total Synthesis of (±)-Torreyanic Acid. J. Am. Chem. Soc. 2000, 122, 10484–10485. [Google Scholar] [CrossRef]
- Li, C.; Johnson, R.P.; Porco, J.A. Total Synthesis of the Quinone Epoxide Dimer (+)-Torreyanic Acid: Application of a Biomimetic Oxidation/Electrocyclization/Diels−Alder Dimerization Cascade1. J. Am. Chem. Soc. 2003, 125, 5095–5106. [Google Scholar] [CrossRef] [PubMed]
- Bellavance, G.; Barriault, L. Modular Total Syntheses of Hyperforin, Papuaforins A, B, and C via Gold(I)-Catalyzed Carbocy-clization. J. Org. Chem. 2018, 83, 7215–7230. [Google Scholar] [CrossRef]
- Shoji, M.; Imai, H.; Mukaida, M.; Sakai, K.; Kakeya, H.; Osada, H.; Hayashi, Y. Total Synthesis of Epoxyquinols A, B, and C and Epoxytwinol A and the Reactivity of a 2H-Pyran Derivative as the Diene Component in the Diels−Alder Reaction. J. Org. Chem. 2005, 70, 79–91. [Google Scholar] [CrossRef]
- Shen, H.C.; Wang, J.; Cole, K.P.; McLaughlin, M.J.; Morgan, C.D.; Douglas, C.J.; Hsung, R.P.; Coverdale, H.A.; Gerasyuto, A.I.; Hahn, J.M.; et al. A Formal [3 + 3] Cycloaddi-tion Reaction. Improved Reactivity Using α,β-Unsaturated Iminium Salts and Evidence for Reversibility of 6π-Electron Elec-trocyclic Ring Closure of 1-Oxatrienes. J. Org. Chem. 2003, 68, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Richard, P.H.; Aleksey, V.K.; Sydorenko, N. A Formal [3 + 3] Cycloaddition Approach to Natural-Product Synthesis. Eur. J. Org. Chem. 2005, 2005, 23–44. [Google Scholar]
- Sunazuka, T.; Handa, M.; Nagai, K.; Shirahata, T.; Harigaya, Y.; Otoguro, K.; Kuwajima, I.; Omura, S. The First Total Synthesis of (±)-Arisugacin A, a Potent, Orally Bioavailable Inhibitor of Acetylcholinesterase. Org. Lett. 2002, 4, 367–369. [Google Scholar] [CrossRef]
- Zehnder, L.R.; Hsung, R.P.; Wang, J.; Golding, G.M. A Concise Stereoselective Route to the Pentacyclic Frameworks of Arisugacin A and Territrem B. Angew. Chem. Int. Ed. 2000, 39, 3876–3879. [Google Scholar] [CrossRef]
- Cole, K.P.; Hsung, R.P. The first enantioselective total synthesis of (−)-arisugacin A. Tetrahedron Lett. 2002, 43, 8791–8793. [Google Scholar] [CrossRef]
- Malerich, J.P.; Trauner, D. Biomimetic Synthesis of (±)-Pinnatal and (±)-Sterekunthal A. J. Am. Chem. Soc. 2003, 125, 9554–9555. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cole, K.P.; Buchanan, G.S.; Li, G.; Hsung, R.P. Total Synthesis of Phomactin A. Org. Lett. 2009, 11, 1591–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, G.S.; Cole, K.P.; Tang, Y.; Hsung, R.P. Total Synthesis of (±)-Phomactin A. Lessons Learned from Respecting a Challenging Structural Topology. J. Org. Chem. 2011, 76, 7027–7039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Mei, Y.; Du, Y.; Jin, Z. Total Synthesis of the Highly Potent Anti-HIV Natural Product Daurichromenic Acid along with Its Two Chromane Derivatives, Rhododaurichromanic Acids A and B. Org. Lett. 2003, 5, 4481–4484. [Google Scholar] [CrossRef] [PubMed]
- Kurdyumov, A.V.; Hsung, R.P.; Ihlen, K.; Wang, J. Formal [3 + 3] Cycloaddition Approach to Chromenes and Chromanes. Concise Total Syntheses of (±)-Rhododaurichromanic Acids A and B and Methyl (±)-Daurichromenic Ester. Org. Lett. 2003, 5, 3935–3938. [Google Scholar] [CrossRef]
- Tisdale, E.J.; Slobodov, I.; Theodorakis, E.A. Biomimetic total synthesis of forbesione and desoxymorellin utilizing a tandem Claisen/Diels–Alder/Claisen rearrangement. Org. Biomol. Chem. 2003, 1, 4418–4422. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.J.; Park, B.H.; Lee, Y.R. Environmentally benign, one-pot synthesis of pyrans by domino Knoevenagel/6π-electrocyclization in water and application to natural products. Green Chem. 2010, 12, 2003–2011. [Google Scholar] [CrossRef]
- Jacob, S.D.; Brooks, J.L.; Frontier, A.J. No Acid Required: 4π and 6π Electrocyclization Reactions of Dienyl Diketones for the Synthesis of Cyclopentenones and 2H-Pyrans. J. Org. Chem. 2014, 79, 10296–10302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, S.; Iso, K.; Hirama, M. A Concise Synthesis of the Pentacyclic Framework of Cortistatins. Org. Lett. 2008, 10, 3413–3415. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Iso, K.; Kitajima, K.; Himuro, M.; Hirama, M. Total Synthesis of Cortistatins A and J. J. Org. Chem. 2011, 76, 2408–2425. [Google Scholar] [CrossRef] [PubMed]
- Holla, H.; Jenkins, I.; Neve, J.E.; Pouwer, R.H.; Pham, N.; Teague, S.J.; Quinn, R. Synthesis of melicodenines C, D and E. Tetrahedron Lett. 2012, 53, 7101–7103. [Google Scholar] [CrossRef] [Green Version]
- Schwan, J.; Kleoff, M.; Heretsch, P.; Christmann, M. Five-Step Synthesis of Yaequinolones J1 and J2. Org. Lett. 2020, 22, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qiao, T.; Watanabe, K.; Tang, Y. Concise Biosynthesis of Phenylfuropyridones in Fungi. Angew. Chem. Int. Ed. 2020, 59, 19889–19893. [Google Scholar] [CrossRef]
- Fotiadou, A.D.; Zografos, A.L. Electrocyclization of Oxatrienes in the Construction of Structurally Complex Pyranopyridones. Org. Lett. 2012, 14, 5664–5667. [Google Scholar] [CrossRef]
- Wang, X.; Lee, Y.R. Efficient Synthesis of Substituted Pyranoquinolinones from 2,4-Dihydroxyquinoline: Total Synthesis of Zanthosimuline, cis-3′,4′-Dihydroxy-3′,4′-Dihydroflindersine, and Orixalone D. Synthesis 2007, 2007, 3044–3050. [Google Scholar] [CrossRef]
- Thompson, S.; Coyne, A.G.; Knipe, P.C.; Smith, M.D. Asymmetric electrocyclic reactions. Chem. Soc. Rev. 2011, 40, 4217–4231. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takizawa, I.; Shinobe, A.; Kawamoto, Y.; Abe, H.; Ito, H. Asymmetric Synthesis and Structure Revision of Guignardone H and I: Development of a Chiral 1,3-Diketone Possessing C2 Symmetry. Org. Lett. 2019, 21, 3008–3012. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takizawa, I.; Kawamoto, Y.; Ito, H. Sequential condensation-6π-electrocyclization reaction of a chiral 1,3-Diketone possessing C2 symmetry. Tetrahedron Lett. 2020, 61, 151897. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, C.; Gong, J.; Yang, Z. Asymmetric Total Synthesis of (−)-Guignardones A and B. Org. Lett. 2020, 22, 1644–1647. [Google Scholar] [CrossRef]
- Murray, L.A.M.; Fallon, T.; Sumby, C.J.; George, J.H. Total Synthesis of Naphterpin and Marinone Natural Products. Org. Lett. 2019, 21, 8312–8315. [Google Scholar] [CrossRef]
- Tambar, U.K.; Kano, T.; Stoltz, B.M. Progress toward the Total Synthesis of Saudin: Development of a Tandem Stille-Oxa-Electrocyclization Reaction. Org. Lett. 2005, 7, 2413–2416. [Google Scholar] [CrossRef] [Green Version]
- Tambar, U.K.; Kano, T.; Zepernick, A.J.F.; Stoltz, B.M. Convergent and Diastereoselective Synthesis of the Polycyclic Pyran Core of Saudin. J. Org. Chem. 2006, 71, 8357–8364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambar, U.K.; Kano, T.; Zepernick, J.F.; Stoltz, B.M. The development and scope of a versatile tandem Stille-oxa-electrocyclization reaction. Tetrahedron Lett. 2007, 48, 345–350. [Google Scholar] [CrossRef]
- Parker, K.A.; Mindt, T.L. Convergent synthesis of 2H-chromenes—a formal [3+3] cycloaddition by a one-pot, three-step cascade. Tetrahedron 2011, 67, 9779–9786. [Google Scholar] [CrossRef] [Green Version]
- Uyanik, M.; Nishioka, K.; Kondo, R.; Ishihara, K. Chemoselective oxidative generation of ortho-quinone methides and tandem transformations. Nat. Chem. 2020, 12, 353–362. [Google Scholar] [CrossRef]
- Iguchi, D.; Erra-Balsells, R.; Bonesi, S.M. Formation of 2,2-dimethylchroman-4-ones during the photoinduced rearrangement of some aryl 3-methyl-2-butenoate esters. A mechanistic insight. Tetrahedron 2016, 72, 1903–1910. [Google Scholar] [CrossRef]
- Cole, K.P.; Hsung, R.P. Intramolecular Formal oxa-[3 + 3] Cycloaddition Approach to the ABD System of Phomactin A. Org. Lett. 2003, 35, 4843–4846. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.S.; Trauner, D. Concise Synthesis of (±)-Smenochromene D (= Likonide B). Synlett 2005, 2005, 700–702. [Google Scholar] [CrossRef]
- Hall, A.J.; Roche, S.P.; West, L.M. Synthesis of Briarane Diterpenoids: Biomimetic Transannular Oxa-6π electrocyclization Induced by a UVA/UVC Photoswitch. Org. Lett. 2017, 19, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Kutateladze, A.G.; Krenske, E.H.; Williams, C.M. Reassignments and Corroborations of Oxo-Bridged Natural Products Di-rected by OSE and DU8+ NMR Computation. Angew. Chem. Int. Ed. 2019, 58, 7107–7112. [Google Scholar] [CrossRef] [PubMed]
- Boon, B.A.; Green, A.G.; Liu, P.; Houk, K.N.; Merlic, C.A. Using Ring Strain to Control 4π-Electrocyclization Reactions: Torquoselectivity in Ring Closing of Medium-Ring Dienes and Ring Opening of Bicyclic Cyclobutenes. J. Org. Chem. 2017, 82, 4613–4624. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Jia, Y.; Luan, X.; Yang, L.; Pei, Y.; Zhou, W. Insight into 6π Electrocyclic Reactions of 1,8-Dioxatetraene. Angew. Chem. Int. Ed. 2019, 58, 2660–2664. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roche, S.P. Recent Advances in Oxa-6π Electrocyclization Reactivity for the Synthesis of Privileged Natural Product Scaffolds. Organics 2021, 2, 376-387. https://doi.org/10.3390/org2040021
Roche SP. Recent Advances in Oxa-6π Electrocyclization Reactivity for the Synthesis of Privileged Natural Product Scaffolds. Organics. 2021; 2(4):376-387. https://doi.org/10.3390/org2040021
Chicago/Turabian StyleRoche, Stéphane P. 2021. "Recent Advances in Oxa-6π Electrocyclization Reactivity for the Synthesis of Privileged Natural Product Scaffolds" Organics 2, no. 4: 376-387. https://doi.org/10.3390/org2040021
APA StyleRoche, S. P. (2021). Recent Advances in Oxa-6π Electrocyclization Reactivity for the Synthesis of Privileged Natural Product Scaffolds. Organics, 2(4), 376-387. https://doi.org/10.3390/org2040021