Synthetic Organic Molecules as Metallic Corrosion Inhibitors: General Aspects and Trends
Abstract
:1. Introduction
1.1. Corrosion Process Fundamentals: Chemistry, Society, Economy, and Environment
1.2. Organic Molecules in the Corrosion Inhibition Process
2. Synthetic Organic Corrosion Inhibitors
2.1. Mannich Bases
2.2. Schiff Bases
2.3. Six-Membered Heterocyclic Nucleus
2.4. Five-Membered Heterocyclic Nucleus
2.5. Polycyclic-Based Compounds
2.6. Carbazones and Carboxamides
2.7. Miscellaneous
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslam, R.; Serdaroglu, G.; Zehra, S.; Kumar Verma, D.; Aslam, J.; Guo, L.; Verma, C.; Ebenso, E.E.; Quraishi, M.A. Corrosion Inhibition of Steel Using Different Families of Organic Compounds: Past and Present Progress. J. Mol. Liq. 2022, 348, 118373. [Google Scholar] [CrossRef]
- Popoola, L.T. Organic Green Corrosion Inhibitors (OGCIs): A Critical Review. Corros. Rev. 2019, 37, 71–102. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Chauhan, D.S.; Ansari, F.A. Development of Environmentally Benign Corrosion Inhibitors for Organic Acid Environments for Oil-Gas Industry. J. Mol. Liq. 2021, 329, 115514. [Google Scholar] [CrossRef]
- Lou, Y.; Chang, W.; Cui, T.; Wang, J.; Qian, H.; Ma, L.; Hao, X.; Zhang, D. Microbiologically Influenced Corrosion Inhibition Mechanisms in Corrosion Protection: A Review. Bioelectrochemistry 2021, 141, 107883. [Google Scholar] [CrossRef]
- Wei, H.; Heidarshenas, B.; Zhou, L.; Hussain, G.; Li, Q.; Ostrikov, K.K. Green Inhibitors for Steel Corrosion in Acidic Environment: State of Art. Mater. Today Sustain. 2020, 10, 100044. [Google Scholar] [CrossRef]
- Kokalj, A. Corrosion Inhibitors: Physisorbed or Chemisorbed? Corros. Sci. 2022, 196, 109939. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Electronic Effect vs. Molecular Size Effect: Experimental and Computational Based Designing of Potential Corrosion Inhibitors. Chem. Eng. J. 2022, 430, 132645. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Verma, C.; Quraishi, M.A. Molecular Structural Aspects of Organic Corrosion Inhibitors: Experimental and Computational Insights. J. Mol. Struct. 2021, 1227, 129374. [Google Scholar] [CrossRef]
- Fateh, A.; Aliofkhazraei, M.; Rezvanian, A.R. Review of Corrosive Environments for Copper and Its Corrosion Inhibitors. Arab. J. Chem. 2020, 13, 481–544. [Google Scholar] [CrossRef]
- da Silva, A.D.; do Nascimento, G.X.; Quattrociocchi, D.G.S.; Martinazzo, A.P. Quantum chemical properties using the DFT method: A theoretical tool applied in the study of corrosion inhibitors. Res. Soc. Dev. 2020, 12, e2291210499. [Google Scholar]
- Quattrociocchi, D.G.S.; Santoro, A.S.; da Fonseca, T.N.M.; da Conceição Júnior, V.; Paes, L.W.C.; Campos, V.R. Técnicas Experimentais e Teóricas Aplicadas Ao Estudo de Inibidores Orgânicos de Corrosão Em Meio Ácido. Res. Soc. Dev. 2022, 11, e57811932321. [Google Scholar] [CrossRef]
- Kokalj, A. On the Alleged Importance of the Molecular Electron-Donating Ability and the HOMO–LUMO Gap in Corrosion Inhibition Studies. Corros. Sci. 2021, 180, 109016. [Google Scholar] [CrossRef]
- Kokalj, A. Molecular Modeling of Organic Corrosion Inhibitors: Calculations, Pitfalls, and Conceptualization of Molecule–Surface Bonding. Corros Sci 2021, 193, 109650. [Google Scholar] [CrossRef]
- Verma, D.K.; Aslam, R.; Aslam, J.; Quraishi, M.A.; Ebenso, E.E.; Verma, C. Computational Modeling: Theoretical Predictive Tools for Designing of Potential Organic Corrosion Inhibitors. J. Mol. Struct. 2021, 1236, 130294. [Google Scholar] [CrossRef]
- Kokalj, A.; Costa, D. Molecular Modeling of Corrosion Inhibitors. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 332–345. ISBN 9780128098943. [Google Scholar]
- Verma, C.; Ebenso, E.E.; Quraishi, M.A. Ultrasound and microwave heating for the synthesis of green corrosion inhibitors: A literature study. In Environmentally Sustainable Corrosion Inhibitors: Fundamentals and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 303–319. ISBN 978-0-323-85405-4. [Google Scholar]
- Dewangan, A.K.; Dewangan, Y.; Verma, D.K.; Verma, C. Synthetic environment-friendly corrosion inhibitors. In Environmentally Sustainable Corrosion Inhibitors: Fundamentals and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 71–95. ISBN 978-0-323-85405-4. [Google Scholar]
- Fernandes, C.M.; Alvarez, L.X.; dos Santos, N.E.; Maldonado Barrios, A.C.; Ponzio, E.A. Green Synthesis of 1-Benzyl-4-Phenyl-1H-1,2,3-Triazole, Its Application as Corrosion Inhibitor for Mild Steel in Acidic Medium and New Approach of Classical Electrochemical Analyses. Corros. Sci. 2019, 149, 185–194. [Google Scholar] [CrossRef]
- Ebenso, E.E.; Verma, C.; Olasunkanmi, L.O.; Akpan, E.D.; Verma, D.K.; Lgaz, H.; Guo, L.; Kayah, S.; Quraishi, M.A. Molecular modelling of compounds used for corrosion inhibition studies: A review. Phys. Chem. Chem. Phys. 2021, 23, 19987–20027. [Google Scholar] [CrossRef]
- Sanyal, B. Organic compounds as corrosion inhibitors in different environments—A Review. Process Org. Coat. 1981, 9, 165–236. [Google Scholar] [CrossRef]
- Samiee, R.; Ramezanzadeh, B.; Mahdavian, M.; Alibakhshi, E. Assessment of the Smart Self-Healing Corrosion Protection Properties of a Water-Base Hybrid Organo-Silane Film Combined with Non-Toxic Organic/Inorganic Environmentally Friendly Corrosion Inhibitors on Mild Steel. J. Clean. Prod. 2019, 220, 340–356. [Google Scholar] [CrossRef]
- Mu, G.; Li, X.; Qu, Q.; Zhou, J. Molybdate and Tungstate as Corrosion Inhibitors for Cold Rolling Steel in Hydrochloric Acid Solution. Corros. Sci. 2006, 48, 445–459. [Google Scholar] [CrossRef]
- Raja, P.B.; Ismail, M.; Ghoreishiamiri, S.; Mirza, J.; Ismail, M.C.; Kakooei, S.; Rahim, A.A. Reviews on Corrosion Inhibitors: A Short View. Chem. Eng. Commun. 2016, 203, 1145–1156. [Google Scholar] [CrossRef]
- Gece, G. Drugs: A Review of Promising Novel Corrosion Inhibitors. Corros. Sci. 2011, 53, 3873–3898. [Google Scholar] [CrossRef]
- Iroha, N.B.; Madueke, N.A.; Mkpenie, V.; Ogunyemi, B.T.; Nnanna, L.A.; Singh, S.; Akpan, E.D.; Ebenso, E.E. Experimental, Adsorption, Quantum Chemical and Molecular Dynamics Simulation Studies on the Corrosion Inhibition Performance of Vincamine on J55 Steel in Acidic Medium. J. Mol. Struct. 2021, 1227, 129533. [Google Scholar] [CrossRef]
- Shukla, S.K.; Singh, A.K.; Ahamad, I.; Quraishi, M.A. Streptomycin: A Commercially Available Drug as Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Solution. Mater. Lett. 2009, 63, 819–822. [Google Scholar] [CrossRef]
- Eddy, N.O.; Odoemelam, S.A.; Ekwumemgbo, P. Inhibition of the Corrosion of Mild Steel in H2SO4 by Penicillin G. Sci. Res. Essay 2009, 4, 33–038. [Google Scholar]
- Ituen, E.; James, A.; Akaranta, O.; Sun, S. Eco-friendly corrosion inhibitor from Pennisetum purpureum biomass and synergistic intensifiers for mild steel. Chin. J. Chem. Eng. 2016, 24, 1442–1447. [Google Scholar] [CrossRef]
- Rajeswari, V.; Kesavan, D.; Gopiraman, M.; Viswanathamurthi, P. Physicochemical Studies of Glucose, Gellan Gum, and Hydroxypropyl Cellulose—Inhibition of Cast Iron Corrosion. Carbohydr. Polym. 2013, 95, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, X.; Tabish, M.; Wang, J. Sunflower-head extract as a sustainable and eco-friendly corrosion inhibitor for carbon steel in hydrochloric acid and sulfuric acid solutions. J. Mol. Liq. 2022, 367, 120429. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, H.; Liu, L.; Zhang, Q.; Wu, X.; Yan, Z.; Sun, Y.; Li, X. Insight into the anti–corrosion behavior of Reineckia Carnea leaves extract as an eco–friendly and high–efficiency corrosion inhibitor. Ind. Crops Prod. 2022, 188, 115640. [Google Scholar] [CrossRef]
- Nazari, A.; Ramezanzadeh, B.; Guo, L.; Dehghani, A. Application of green active bio-molecules from the aquatic extract of Mint leaves for steel corrosion control in hydrochloric acid (1M) solution: Surface, electrochemical, and theoretical explorations. Colloids Surf. A 2023, 656, 130540. [Google Scholar] [CrossRef]
- Haque, J.; Srivastava, V.; Chauhan, D.S.; Quraishi, M.A.; Madhan Kumar, A.; Lgaz, H. Electrochemical and Surface Studies on Chemically Modified Glucose Derivatives as Environmentally Benign Corrosion Inhibitors. Sustain. Chem. Pharm. 2020, 16, 100260. [Google Scholar] [CrossRef]
- Chaubey, N.; Savita; Qurashi, A.; Chauhan, D.S.; Quraishi, M.A. Frontiers and Advances in Green and Sustainable Inhibitors for Corrosion Applications: A Critical Review. J. Mol. Liq. 2021, 321, 114385. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, J.; Nishtha. Natural gums as corrosion inhibitor: A review. Mater. Today Proc. 2022, 64, 141–146. [Google Scholar] [CrossRef]
- Quaraishi, M.A.; Rawat, J. A review on macrocyclics as corrosion inhibitors. Corros. Rev. 2001, 19, 273–299. [Google Scholar] [CrossRef]
- Wight, J.B. Some Reactions of Mannich Bases Derived from a-Phenoxyacetophenone and a-Phenoxypropiophenone. J. Org. Chem. 1960, 25, 1867–1972. [Google Scholar] [CrossRef]
- Tramontini, M. Advances in the Chemistry of Mannich Bases. Synthesis 1973, 1973, 703–775. [Google Scholar] [CrossRef]
- Roman, G. Mannich bases in medicinal chemistry and drug design. Eur. J. Med. Chem. 2015, 89, 743–816. [Google Scholar] [CrossRef] [PubMed]
- Tramontini, M.; Angiolini, L.; Ghedini, N. Mannich bases in polymer chemistry. Polymer 1988, 29, 771–788. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Zhang, Z.; Li, Q.; Lv, R.; Wu, W. Bis-Mannich Bases as Effective Corrosion Inhibitors for N80 Steel in 15% HCl Medium. J. Mol. Liq. 2022, 347, 117957. [Google Scholar] [CrossRef]
- Schaub, T. Efficient Industrial Organic Synthesis and the Principles of Green Chemistry. Chem. A Eur. J. 2021, 27, 1865–1869. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Pina, V.G.S.S.; Alfaro, C.G.; de Sampaio, M.T.G.; Massante, F.F.; Alvarez, L.X.; Barrios, A.M.; Silva, J.C.M.; Alves, O.C.; Briganti, M.; et al. Innovative Characterization of Original Green Vanillin-Derived Schiff Bases as Corrosion Inhibitors by a Synergic Approach Based on Electrochemistry, Microstructure, and Computational Analyses. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128540. [Google Scholar] [CrossRef]
- Zinad, D.S.; Salim, R.D.; Betti, N.; Shaker, L.M.; Al-Amiery, A.A. Comparative Investigations of the Corrosion Inhibition Efficiency of a 1-Phenyl-2-(1-Phenylethylidene)Hydrazine and Its Analog Against Mild Steel Corrosion in Hydrochloric Acid Solution. Prog. Color Color. Coat. 2021, 15, 53–63. [Google Scholar] [CrossRef]
- El-Haitout, B.; Selatnia, I.; Lgaz, H.; Al-Hadeethi, M.R.; Lee, H.S.; Chaouiki, A.; Ko, Y.G.; Ali, I.H.; Salghi, R. Exploring the Feasibility of New Eco-Friendly Heterocyclic Compounds for Establishing Efficient Corrosion Protection for N80 Steel in a Simulated Oil Well Acidizing Environment: From Molecular-Level Prediction to Experimental Validation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130372. [Google Scholar] [CrossRef]
- Çavuş, M.S.; Yakan, H.; Özorak, C.; Muğlu, H.; Bakır, T.K. New N,N′-Bis(Thioamido)Thiocarbohydrazones and Carbohydrazones: Synthesis, Structure Characterization, Antioxidant Activity, Corrosion Inhibitors and DFT Studies. Res. Chem. Intermed. 2022, 48, 1593–1613. [Google Scholar] [CrossRef]
- Bimoussa, A.; Koumya, Y.; Oubella, A.; Kaddouri, Y.; Fawzi, M.; Laamari, Y.; Abouelfida, A.; Ait Itto, M.Y.; Touzani, R.; Benyaich, A.; et al. Synthesis, Experimental and Theoretical Studies of Sesquiterpenic Thiosemicarbazone and Semicarbazone as Organic Corrosion Inhibitors for Stainless Steel 321 in H2SO4 1M. J. Mol. Struct. 2022, 1253, 132276. [Google Scholar] [CrossRef]
- Mehta, R.K.; Gupta, S.K.; Yadav, M. Studies on Pyrimidine Derivative as Green Corrosion Inhibitor in Acidic Environment: Electrochemical and Computational Approach. J. Environ. Chem. Eng. 2022, 10, 108499. [Google Scholar] [CrossRef]
- Rezaeivala, M.; Karimi, S.; Sayin, K.; Tüzün, B. Experimental and Theoretical Investigation of Corrosion Inhibition Effect of Two Piperazine-Based Ligands on Carbon Steel in Acidic Media. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128538. [Google Scholar] [CrossRef]
- Lessa, R.C.S. 1,2,3-Triazole Nucleus as a Versatile Tool for the Obtainment of Novel Biologically Active Compounds: An Overview. Rev. Virtual Quim. 2021, 13, 74–89. [Google Scholar] [CrossRef]
- Sahiba, N.; Sethiya, A.; Soni, J.; Agarwal, D.K.; Agarwal, S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top. Curr. Chem. 2020, 378, 34. [Google Scholar] [CrossRef]
- Grunberg, E.; Titsworth, E.H. Properties of Heterocyclic Compounds: Monocyclic compounds with five-membered rings. Annu. Rev. Microbiol. 1973, 27, 317–346. [Google Scholar] [CrossRef]
- Ambhaikar, N.B.; Uppaluri, S. Five-membered ring systems: With N and S atom. Prog. Heterocycl. Chem. 2023, 34, 305–340. [Google Scholar] [CrossRef]
- Kotian, S.Y.; Mohan, C.D.; Merlo, A.A.; Rangappa, S.; Nayak, S.C.; Rai, K.M.L.; Rangappa, K.S. Small Molecule Based Five-Membered Heterocycles: A View of Liquid Crystalline Properties beyond the Biological Applications. J. Mol. Liq. 2020, 297, 111686. [Google Scholar] [CrossRef]
- Filho, J.R.D.F.; Freitas, J.J.R.D.; Freitas, J.C.R.D.; Ramos, C.D.S.; Souza, F.A.M.D.; Ramos, J.F.; Tavares, R.; Oliveira, D.E.T.B.d. Synthesis, Biological Activity and Applications of 1,2,5-Oxadiazol: A Brief Review. Int. Res. J. Pure Appl. Chem. 2023, 24, 1–26. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Cherkaoui, M. Imidazole Derivatives as Efficient and Potential Class of Corrosion Inhibitors for Metals and Alloys in Aqueous Electrolytes: A Review. J. Mol. Liq. 2022, 345, 117815. [Google Scholar] [CrossRef]
- Hou, Y.; Zhu, L.; He, K.; Yang, Z.; Ma, S.; Lei, J. Synthesis of Three Imidazole Derivatives and Corrosion Inhibition Performance for Copper. J. Mol. Liq. 2022, 348, 118432. [Google Scholar] [CrossRef]
- Cherrak, K.; Khamaysa, O.M.A.; Bidi, H.; Massaoudi, M.e.; Ali, I.A.; Radi, S.; el Ouadi, Y.; El-Hajjaji, F.; Zarrouk, A.; Dafali, A. Performance Evaluation of Newly Synthetized Bi-Pyrazole Derivatives as Corrosion Inhibitors for Mild Steel in Acid Environment. J. Mol. Struct. 2022, 1261, 132925. [Google Scholar] [CrossRef]
- Li, W.; Tan, B.; Zhang, S.; Guo, L.; Ji, J.; Yan, M.; Wang, R. Insights into Triazole Derivatives as Potential Corrosion Inhibitors in CMP Process: Experimental Evaluation and Theoretical Analysis. Appl. Surf. Sci. 2022, 602, 154165. [Google Scholar] [CrossRef]
- Hrimla, M.; Bahsis, L.; Laamari, M.R.; Julve, M.; Stiriba, S.E. An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces. Int. J. Mol. Sci. 2022, 23, 16. [Google Scholar] [CrossRef]
- Abdelsalam, M.M.; Bedair, M.A.; Hassan, A.M.; Heakal, B.H.; Younis, A.; Elbialy, Z.I.; Badawy, M.A.; Fawzy, H.E.D.; Fareed, S.A. Green Synthesis, Electrochemical, and DFT Studies on the Corrosion Inhibition of Steel by Some Novel Triazole Schiff Base Derivatives in Hydrochloric Acid Solution. Arab. J. Chem. 2022, 15, 103491. [Google Scholar] [CrossRef]
- Arrousse, N.; Fernine, Y.; Al-Zaqri, N.; Boshaala, A.; Ech-Chihbi, E.; Salim, R.; el Hajjaji, F.; Alami, A.; Touhami, M.E.; Taleb, M. Thiophene Derivatives as Corrosion Inhibitors for 2024-T3 Aluminum Alloy in Hydrochloric Acid Medium. RSC Adv. 2022, 12, 10321–10335. [Google Scholar] [CrossRef]
- Kumar, S.; Kalia, V.; Goyal, M.; Jhaa, G.; Kumar, S.; Vashisht, H.; Dahiya, H.; Quraishi, M.A.; Verma, C. Newly Synthesized Oxadiazole Derivatives as Corrosion Inhibitors for Mild Steel in Acidic Medium: Experimental and Theoretical Approaches. J. Mol. Liq. 2022, 357, 119077. [Google Scholar] [CrossRef]
- Mathada, B.S.; Yernale, N.G.; Basha, J.N. The Multi-Pharmacological Targeted Role of Indole and its Derivatives: A review. ChemistrySelect 2023, 8, e202204181. [Google Scholar] [CrossRef]
- Li, T.; Xu, H. Recent Progress of Bioactivities, Mechanisms of Action, Total Synthesis, Structural Modifications and Structure-activity Relationships of Indole Derivatives: A Review. Mini Rev. Med. Chem. 2022, 22, 2702–2725. [Google Scholar] [CrossRef]
- Yan, F.; Cao, X.X.; Jiang, H.X.; Zhao, X.L.; Wang, J.Y.; Lin, Y.H.; Liu, Q.L.; Zhang, C.; Jiang, B.; Guo, F. A Novel Water-Soluble Gossypol Derivative Increases Chemotherapeutic Sensitivity and Promotes Growth Inhibition in Colon Cancer. J. Med. Chem. 2010, 53, 5502–5510. [Google Scholar] [CrossRef] [PubMed]
- Berdimurodov, E.; Kholikov, A.; Akbarov, K.; Guo, L.; Kaya, S.; Katin, K.P.; Verma, D.K.; Rbaa, M.; Dagdag, O.; Haldhar, R. Novel Gossypol–Indole Modification as a Green Corrosion Inhibitor for Low–Carbon Steel in Aggressive Alkaline–Saline Solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128207. [Google Scholar] [CrossRef]
- Ajani, O.O.; Iyaye, K.T.; Ademosum, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs—A review. RSC Adv. 2022, 12, 18594–18614. [Google Scholar] [CrossRef]
- Rajendran, S.; Sivalingam, K.; Jayarampillai, R.P.K.; Wang, W.L.; Salas, C.O. Friedländer’s synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem. Biol. Drug Des. 2022, 100, 1042–1085. [Google Scholar] [CrossRef]
- El Faydy, M.; Benhiba, F.; Warad, I.; Saoiabi, S.; Alharbi, A.; Alluhaybi, A.A.; Lakhrissi, B.; Abdallah, M.; Zarrouk, A. Bisquinoline Analogs as Corrosion Inhibitors for Carbon Steel in Acidic Electrolyte: Experimental, DFT, and Molecular Dynamics Simulation Approaches. J. Mol. Struct. 2022, 1265, 133389. [Google Scholar] [CrossRef]
- Elaryian, H.M.; Bedair, M.A.; Bedair, A.H.; Aboushahba, R.M.; Fouda, A.E.A.S. Synthesis, Characterization of Novel Coumarin Dyes as Corrosion Inhibitors for Mild Steel in Acidic Environment: Experimental, Theoretical, and Biological Studies. J. Mol. Liq. 2022, 346, 118310. [Google Scholar] [CrossRef]
- Caihong, Y.; Singh, A.; Ansari, K.R.; Ali, I.H.; Kumar, R. Novel Nitrogen Based Heterocyclic Compound as Q235 Steel Corrosion Inhibitor in 15% HCl under Dynamic Condition: A Detailed Experimental and Surface Analysis. J. Mol. Liq. 2022, 362, 119720. [Google Scholar] [CrossRef]
- Ramesh, R.; Tamilselvi, V.; Vadivel, P.; Lalitha, A. Innovative Green Synthesis of 4-Aryl-Pyrazolo[5,6]Pyrano [2,3-d]Pyrimidines under Catalyst-Free Conditions. Polycycl. Aromat. Compd. 2020, 40, 811–823. [Google Scholar] [CrossRef]
- Ramachandran, A.; Anitha, P.; Gnanavel, S. Structural and Electronic Impacts on Corrosion Inhibition Activity of Novel Heterocyclic Carboxamides Derivatives on Mild Steel in 1 M HCl Environment: Experimental and Theoretical Approaches. J. Mol. Liq. 2022, 359, 119218. [Google Scholar] [CrossRef]
- Elqars, E.; Oubella, A.; Eddine Hachim, M.; Byadi, S.; Auhmani, A.; Guennoun, M.; Essadki, A.; Riahi, A.; Robert, A.; Itto, M.Y.A.; et al. New 3-(2-Methoxyphenyl)-Isoxazole-Carvone: Synthesis, Spectroscopic Characterization, and Prevention of Carbon Steel Corrosion in Hydrochloric Acid. J. Mol. Liq. 2022, 347, 118311. [Google Scholar] [CrossRef]
- Elqars, E.; Oubella, A.; Byadi, S.; Hachim, M.E.; Auhmani, A.; Guennoun, M.; Essadki, A.; Riahi, A.; Robert, A.; Itto, M.Y.A.; et al. Synthesis, Spectroscopic Characterization, and Prevention of Carbon Steel Corrosion in Hydrochloric Acid of a New Bis-Isoxazoline-Carvone. J. Mol. Struct. 2022, 1256, 132526. [Google Scholar] [CrossRef]
- Geng, S.; Hu, J.; Yu, J.; Zhang, C.; Wang, H.; Zhong, X. Rosin Imidazoline as an Eco-Friendly Corrosion Inhibitor for the Carbon Steel in CO2-Containing Solution and Its Synergistic Effect with Thiourea. J. Mol. Struct. 2022, 1250, 131778. [Google Scholar] [CrossRef]
- Akinyele, O.F.; Adekunle, A.S.; Olayanju, D.S.; Oyeneyin, O.E.; Durodola, S.S.; Ojo, N.D.; Akinmuyisitan, A.A.; Ajayeoba, T.A.; Olasunkanmi, L.O. Synthesis and Corrosion Inhibition Studies of (E)-3-(2-(4-chloro-2-Nitrophenyl)Diazenyl)-1-Nitrosonaphthalen-2-Ol on Mild Steel Dissolution in 0.5 M HCl Solution- Experimental, DFT and Monte Carlo Simulations. J. Mol. Struct. 2022, 1268, 133738. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Shaaban, S.; Shalabi, K.; Khalaf, M.M. Novel Organoselenium-Based N-Mealanilic Acids as Efficacious Corrosion Inhibitors for 6061 Aluminum Alloy in Molar HCl: In-Silico Modeling, Electrochemical, and Surface Morphology Studies. J. Taiwan Inst. Chem. Eng. 2022, 133, 104258. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Shaaban, S.; Khalaf, M.M.; Toghan, A.; Shalabi, K. Synthesis, experimental, and computational studies of water soluble anthranilic organoselenium compounds as safe corrosion inhibitors for J55 pipeline steel in acidic oilfield formation water. Colloids Surf. A 2021, 625, 126894. [Google Scholar] [CrossRef]
- Furtado, L.B.; Nascimento, R.C.; Guimarães, M.J.O.C.; Brasil, S.L.D.C.; Barra, S.H.R. Green Eugenol Oligomers as Corrosion Inhibitors for Carbon Steel in 1M HCl. Mater. Res. 2022, 25, e20220012. [Google Scholar] [CrossRef]
- Rahimi, A.; Farhadian, A.; Berisha, A.; Shaabani, A.; Varfolomeev, M.A.; Mehmeti, V.; Zhong, X.; Yousefzadeh, S.; Djimasbe, R. Novel Sucrose Derivative as a Thermally Stable Inhibitor for Mild Steel Corrosion in 15% HCl Medium: An Experimental and Computational Study. Chem. Eng. J. 2022, 446, 136938. [Google Scholar] [CrossRef]
- Ould Abdelwedoud, B.; Damej, M.; Tassaoui, K.; Berisha, A.; Tachallait, H.; Bougrin, K.; Mehmeti, V.; Benmessaoud, M. Inhibition Effect of N-Propargyl Saccharin as Corrosion Inhibitor of C38 Steel in 1 M HCl, Experimental and Theoretical Study. J. Mol. Liq. 2022, 354, 118784. [Google Scholar] [CrossRef]
- Ruf, E.; Naundorf, T.; Seddig, T.; Kipphardt, H.; Maison, W. Natural Product-Derived Phosphonic Acids as Corrosion Inhibitors for Iron and Steel. Molecules 2022, 27, 1778. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lessa, R.C.d.S. Synthetic Organic Molecules as Metallic Corrosion Inhibitors: General Aspects and Trends. Organics 2023, 4, 232-250. https://doi.org/10.3390/org4020019
Lessa RCdS. Synthetic Organic Molecules as Metallic Corrosion Inhibitors: General Aspects and Trends. Organics. 2023; 4(2):232-250. https://doi.org/10.3390/org4020019
Chicago/Turabian StyleLessa, Renato Corrêa da Silva. 2023. "Synthetic Organic Molecules as Metallic Corrosion Inhibitors: General Aspects and Trends" Organics 4, no. 2: 232-250. https://doi.org/10.3390/org4020019
APA StyleLessa, R. C. d. S. (2023). Synthetic Organic Molecules as Metallic Corrosion Inhibitors: General Aspects and Trends. Organics, 4(2), 232-250. https://doi.org/10.3390/org4020019