Efficient Extraction of the RuBisCO Enzyme from Spinach Leaves Using Aqueous Solutions of Biocompatible Ionic Liquids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. RuBisCOs’ Extraction Using Aqueous Solutions of ILs
2.3. Response Surface Methodology (RSM)
2.4. Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis
2.5. Size Exclusion High-Performance Liquid Chromatography
2.6. Circular Dichroism Spectroscopy
3. Results and Discussion
3.1. RuBisCOs’ Extraction from Spinach Leaves
3.1.1. Effect of IL Aqueous Solutions on RuBisCO’s Extraction
3.1.2. Effect of Aqueous Solutions of Cholinium-Based ILs and Their Concentration on RuBisCO’s Extraction
3.2. Response Surface Methodology (RSM)
3.2.1. Results Obtained Using Aqueous Solutions of [Ch]Cl
3.2.2. Results Obtained Using Aqueous Solutions of [Ch][Ac]
3.3. Comparison between Conventional Solvents and Ionic Liquids in the Extraction of RuBisCO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tcherkez, G.G.B.; Bathellier, C.; Stuart-Williams, H.; Whitney, S.; Gout, E.; Bligny, R.; Badger, M.; Farquhar, G.D. D2O solvent isotope effects suggest uniform energy barriers in ribulose-1,5-bisphosphate carboxylase/oxygenase catalysis. Biochemistry 2013, 52, 869–877. [Google Scholar] [CrossRef]
- Kobbi, S.; Bougatef, A.; Le flem, G.; Balti, R.; Mickael, C.; Fertin, B.; Chaabouni, S.; Dhulster, P.; Nedjar, N. Purification and Recovery of RuBisCO Protein from Alfalfa Green Juice: Antioxidative Properties of Generated Protein Hydrolysate. Waste Biomass Valor 2017, 8, 493–504. [Google Scholar] [CrossRef]
- Dotsenko, G.; Lange, L. Enzyme Enhanced Protein Recovery from Green Biomass Pulp. Waste Biomass Valor 2017, 8, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Tenorio, A.T.; Gieteling, J.; De Jong, G.A.H.; Boom, R.M.; Van Der Goot, A.J. Recovery of protein from green leaves: Overview of crucial steps for utilisation. Food Chem. 2016, 203, 402–408. [Google Scholar] [CrossRef]
- Zhang, C.; Sanders, J.P.M.; Bruins, M.E. Critical parameters in cost-effective alkaline extraction for high protein yield from leaves. Biomass Bioenergy 2014, 67, 466–472. [Google Scholar] [CrossRef]
- Bracher, A.; Whitney, S.M.; Hartl, F.U.; Hayer-Hartl, M. Biogenesis and Metabolic Maintenance of Rubisco. Annu. Rev. Plant Biol. 2017, 68, 29–60. [Google Scholar] [CrossRef]
- Tenorio, A.T.; Kyriakopoulou, K.E.; Suarez-Garcia, E.; van den Berg, C.; van der Goot, A.J. Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass - Consequences for industrial use. Trends Food Sci. Technol. 2018, 71, 235–245. [Google Scholar] [CrossRef]
- Orr, D.J.; Carmo-Silva, E. Extraction of RuBisCO to determine catalytic constants. In Photosynthesis: Methods and Protocols, Methods in Molecular Biology; Covshoff, S., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1770, pp. 229–238. ISBN 9781493977864. [Google Scholar]
- Cummins, P.L.; Kannappan, B.; Gready, J.E. Ab Initio Molecular Dynamics Simulation and Energetics of the Ribulose-1,5-biphosphate Carboxylation Reaction Catalyzed by Rubisco: Toward Elucidating the Stereospecific Protonation Mechanism. J. Phys. Chem. B 2019, 123, 2679–2686. [Google Scholar] [CrossRef]
- Hanson, D.T. Breaking the rules of Rubisco catalysis. J. Exp. Bot. 2016, 67, 3180–3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alvise, N.; Lesueur-Lambert, C.; Fertin, B.; Dhulster, P.; Guillochon, D. Removal of polyphenols and recovery of proteins from alfalfa white protein concentrate by ultrafiltration and adsorbent resin separations. Sep. Sci. Technol. 2000, 35, 2453–2472. [Google Scholar] [CrossRef]
- Libouga, D.G.; Aguié-Béghin, V.; Douillard, R. Thermal denaturation and gelation of rubisco: Effects of pH and ions. Int. J. Biol. Macromol. 1996, 19, 271–277. [Google Scholar] [CrossRef]
- Ruiz, C.A.S.; van den Berg, C.; Wijffels, R.H.; Eppink, M.H.M. Rubisco separation using biocompatible aqueous two-phase systems. Sep. Purif. Technol. 2018, 196, 254–261. [Google Scholar] [CrossRef]
- Martin, A.H.; Castellani, O.; De Jong, G.A.H.; Bovetto, L.; Schmitt, C. Comparison of the functional properties of RuBisCO protein isolate extracted from sugar beet leaves with commercial whey protein and soy protein isolates. J. Sci. Food Agric. 2019, 99, 1568–1576. [Google Scholar] [CrossRef]
- Di Stefano, E.; Agyei, D.; Njoku, E.N.; Udenigwe, C.C. Plant RuBisCo: An Underutilized Protein for Food Applications. JAOCS J. Am. Oil Chem. Soc. 2018, 95, 1063–1074. [Google Scholar] [CrossRef]
- Bals, B.; Dale, B.E. Economic comparison of multiple techniques for recovering leaf protein in biomass processing. Biotechnol. Bioeng. 2011, 108, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Berk, Z. Extraction. In Food Process Engineering and Technology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 287–309. ISBN 9780124159235. [Google Scholar]
- Passos, H.; Freire, M.G.; Coutinho, J.A.P. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem. 2014, 16, 4786–4815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, R.K.; Streefland, M.; Wijffels, R.H.; Eppink, M.H.M. Extraction and stability of selected proteins in ionic liquid based aqueous two phase systems. Green Chem. 2014, 16, 2670–2679. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Freire, M.G. Extração e Purificação de Produtos de Valor Acrescentado Utilizando Sistemas Aquosos Bifásicos Constituídos por Líquidos Iónicos. Soc. Port. Quim. 2015, 139, 23–34. [Google Scholar]
- Rodrigues, R.D.P.; de Castro, F.C.; Santiago-Aguiar, R.S.; de Rocha, M.V.P. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal. Res. 2018, 31, 454–462. [Google Scholar] [CrossRef]
- Rodrigues, R.D.P.; de Lima, P.F.; Santiago-Aguiar, R.S.; de Rocha, M.V.P. Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis. Algal. Res. 2019, 38, 101391. [Google Scholar] [CrossRef]
- Martins, M.; Vieira, F.A.; Correia, I.; Ferreira, R.A.S.; Abreu, H.; Coutinho, J.A.P.; Ventura, S.P.M. Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions. Green Chem. 2016, 18, 4287–4296. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X. Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins. Bioresour. Technol. 2012, 126, 307–313. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Morais, E.S.; Leite, A.C.; Mohamadou, A.; Holmbom, B.; Holmbom, T.; Neves, B.M.; Coutinho, J.A.P.P.; Freire, M.G.; Silvestre, A.J.D.D. Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chem. 2017, 19, 2626–2635. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, W.; Hu, R.; Dai, X.; Pan, Y. Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. J. Chromatogr. A 2008, 1208, 42–46. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Jena, S.; Tulsiyan, K.D.; Dutta, J.; Chakrabarty, S.; Biswal, H.S. Amino-Acid-Based Ionic Liquids for the Improvement in Stability and Activity of Cytochrome c: A Combined Experimental and Molecular Dynamics Study. J. Phys. Chem. B 2019, 123, 10100–10109. [Google Scholar] [CrossRef] [PubMed]
- Cláudio, A.F.M.; Ferreira, A.M.; Freire, M.G.; Coutinho, J.A.P. Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chem. 2013, 15, 2002–2010. [Google Scholar] [CrossRef]
- Pereira, M.M.; Gomes, J.; Rufino, A.F.C.S.; Rosa, M.E.; Coutinho, A.P.; Mohamadou, A.; Freire, M.G. Glycine-Betaine Ionic Liquid Analogues as Novel Phase-Forming Components of Aqueous Biphasic Systems. Biotechnol. Prog. 2018, 34, 1205–1212. [Google Scholar] [CrossRef]
- Parajó, J.J.; Macário, I.P.E.; Gaetano, Y.D.; Dupont, L.; Salgado, J.; Pereira, J.L.; Gonçalves, F.J.M.; Mohamadou, A.; Ventura, S.P.M. Ecotoxicology and Environmental Safety Glycine-betaine-derived ionic liquids: Synthesis, characterization and ecotoxicological evaluation. Ecotoxicol. Environ. Saf. 2019, 184, 109580. [Google Scholar] [CrossRef]
- Bisht, M.; Jha, I.; Venkatesu, P. Does choline-based amino acid ionic liquid behave as a biocompatible solvent for stem bromelain structure? Process Biochem. 2018, 74, 77–85. [Google Scholar] [CrossRef]
- Diabate, P.D.; Boudesocque, S.; Dupont, L.; Mohamadou, A. Syntheses and characterization of the analogues of glycine-betaine based ionic liquids with saccharinate anion: Application in the extraction of cadmium ion from aqueous solution. J. Mol. Liq. 2018, 272, 708–714. [Google Scholar] [CrossRef]
- Diabate, P.D.; Boudesocque, S.; Mohamadou, A.; Dupont, L. Separation of cobalt, nickel and copper with task-specific amido functionalized glycine-betaine-based ionic liquids. Sep. Purif. Technol. 2020, 244, 116782. [Google Scholar] [CrossRef]
- Leite, A.C.; Ferreira, A.M.; Morais, E.S.; Khan, I.; Freire, M.G.; Coutinho, J.A.P. Cloud Point Extraction of Chlorophylls from Spinach Leaves Using Aqueous Solutions of Nonionic Surfactants. ACS Sustain. Chem. Eng. 2018, 6, 590–599. [Google Scholar] [CrossRef]
- Rodrigues, M.I.I.; Francisco, A. Planejamento de Experimentos e Optimização de Processos; Casa do Pão: Campinas, Brasil, 2005. [Google Scholar]
- Ma, W.; Lu, Y.; Hu, R.; Chen, J.; Zhang, Z.; Pan, Y. Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta 2010, 80, 1292–1297. [Google Scholar] [CrossRef]
- Kumar, P.K.; Jha, I.; Venkatesu, P.; Bahadur, I.; Ebenso, E.E. A comparative study of the stability of stem bromelain based on the variation of anions of imidazolium-based ionic liquids. J. Mol. Liq. 2017, 246, 178–186. [Google Scholar] [CrossRef]
- Bisht, M.; Venkatesu, P. Influence of cholinium-based ionic liquids on the structural stability and activity of α-chymotrypsin. New J. Chem. 2017, 41, 13902–13911. [Google Scholar] [CrossRef]
- Martin, A.H.; Nieuwland, M.; De Jong, G.A.H. Characterization of heat-set gels from RuBisCO in comparison to those from other proteins. J. Agric. Food Chem. 2014, 62, 10783–10791. [Google Scholar] [CrossRef]
- Louis-Jeune, C.; Andrade-Navarro, M.A.; Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins Struct. Funct. Bioinforma. 2012, 80, 374–381. [Google Scholar] [CrossRef]
- Liang, C.; Xiao, W.; Hao, H.; Xiaoqing, L.; Chao, L.; Lei, Z.; Fashui, H. Effect of Mg2+ on the Structure and Function of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Biol. Trace Elem. Res. 2008, 121, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Mao, H.; Ruan, X.; Xu, Q.; Gong, Y.; Zhang, X.; Zhao, N. Association of heat-induced conformational change with activity loss of Rubisco. Biochem. Biophys. Res. Commun. 2002, 290, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
Studied Parameters | Level | ||||
---|---|---|---|---|---|
Axial | Factorial | Central | Factorial | Axial | |
−1.68 | −1 | 0 | 1 | 1.68 | |
pH | 2.8 | 4.5 | 7.0 | 9.5 | 11.2 |
Solid-liquid ratio | 0.02 | 0.05 | 0.10 | 0.15 | 0.18 |
IL concentration (M) | 0.32 | 0.80 | 1.50 | 2.20 | 2.68 |
Extracted RuBisCO | % α-Helix | % β-Sheet |
---|---|---|
Commercially acquired RuBisCO | 1.91 | 20.11 |
RuBisCO extracted with aqueous solutions of [Ch][Ac] 2.68 M | 1.82 | 19.47 |
RuBisCO extracted with aqueous solutions of [Ch]Cl 2.68 M | 1.95 | 20.22 |
RuBisCO extracted with aqueous solutions of NH4OH 0.10 M | 2.15 | 20.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, A.I.; Ferreira, A.M.; Almeida, M.R.; Mohamadou, A.; Freire, M.G.; Tavares, A.P.M. Efficient Extraction of the RuBisCO Enzyme from Spinach Leaves Using Aqueous Solutions of Biocompatible Ionic Liquids. Sustain. Chem. 2022, 3, 1-18. https://doi.org/10.3390/suschem3010001
Valente AI, Ferreira AM, Almeida MR, Mohamadou A, Freire MG, Tavares APM. Efficient Extraction of the RuBisCO Enzyme from Spinach Leaves Using Aqueous Solutions of Biocompatible Ionic Liquids. Sustainable Chemistry. 2022; 3(1):1-18. https://doi.org/10.3390/suschem3010001
Chicago/Turabian StyleValente, Ana I., Ana M. Ferreira, Mafalda R. Almeida, Aminou Mohamadou, Mara G. Freire, and Ana P. M. Tavares. 2022. "Efficient Extraction of the RuBisCO Enzyme from Spinach Leaves Using Aqueous Solutions of Biocompatible Ionic Liquids" Sustainable Chemistry 3, no. 1: 1-18. https://doi.org/10.3390/suschem3010001
APA StyleValente, A. I., Ferreira, A. M., Almeida, M. R., Mohamadou, A., Freire, M. G., & Tavares, A. P. M. (2022). Efficient Extraction of the RuBisCO Enzyme from Spinach Leaves Using Aqueous Solutions of Biocompatible Ionic Liquids. Sustainable Chemistry, 3(1), 1-18. https://doi.org/10.3390/suschem3010001