The Case for Octopus Consciousness: Unity
Abstract
:1. Lateralization of Control of Learning
1.1. Task Specific Lateralized Performance
1.2. Location of the Storage of Learned Visual and Tactile Discrimination in Octopuses
2. Central-Peripheral Allocation of Control: The Arms
3. Integration of Sensory Information
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birch, J.; Schnell, A.K.; Clayton, N.S. Dimensions of animal consciousness. Trends Cogn. Sci. 2020, 24, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain Lateralization: A Comparative Perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. The two hemispheres of the avian brain: Their differing roles in perceptual processing and the expression of behaviour. J. Ornithol. 2012, 153, 61–74. [Google Scholar] [CrossRef]
- Vallotigara, G.; Rogers, L.J. A function for the bicameral mind. Cortex 2020, 124, 274–285. [Google Scholar] [CrossRef]
- Thomas, K.N.; Robison, B.H.; Johnsen, S. Two eyes for two purposes: In situ evidence for asymmetric vision in the cockeyed squids Histioteuthis heteropsis and Stigmatoteuthis dofleini. Philos. Trans. R. Soc. 2017, 372, 20160069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, R.A.; Kuba, M.; Griebel, U. Lateral asymmetry of eye use in Octopus vulgaris. Anim. Behav. 2002, 64, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Byrne, R.A.; Kuba, M.J.; Meisel, D.V. Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 2004, 68, 1107–1114. [Google Scholar] [CrossRef]
- Byrne, R.A.; Kuba, M.J.; Meisel, D.V.; Griebel, U.; Mather, J.A. Octopus arm choice is strongly influenced by eye use. Behav. Brain Res. 2006, 172, 195–201. [Google Scholar] [CrossRef]
- Frasnelli, E.; Ponte, G.; Vallortigara, G.; Fiorito, G. Visual Lateralization in the Cephalopod Mollusk Octopus vulgaris. Symmetry 2019, 11, 1121. [Google Scholar] [CrossRef] [Green Version]
- Jozet-Alves, C.; Darmaillacq, A.-S.; Boal, J.G. Navigation in Cephalopods. In Cephalopod Cognition; Darmaillacq, A.-S., Dickel, L., Mather, J.A., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 150–176. [Google Scholar]
- Darmaillacq., A.-S.; Jozet-Alves, C.; Bellanger, C.; Dickel, L. Cuttlefish Preschool or How to Learn in the Peri-Hatching Period. In Cephalopod Cognition; Darmaillacq, A.-S., Dickel, L., Mather, J.A., Eds.; Cambridge U Press: Cambridge, UK, 2014; pp. 3–30. [Google Scholar]
- Jozet-Alves, C.; Viblanc, A.S.; Romagny, S.; Daucher, M.; Healy, S. Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Anim. Behav. 2012, 83, 1313–1318. [Google Scholar] [CrossRef]
- Jozet-Alves, C.; Hebert, M. Embryonic exposure to predator odour modulates visual lateralization in cuttlefish. Proc. R Soc. B 2013, 280, 20122575. [Google Scholar] [CrossRef] [Green Version]
- Schnell, A.K.; Hanlon, R.T.; Benkada, A.; Jozet-Alves, C. Lateralization of eye use in cuttlefish: Opposite direction for anti-predatory and predatory behaviors. Front. Physiol. 2016, 7, 620. [Google Scholar] [CrossRef] [Green Version]
- Schnell, A.; Bellanger, C.; Vallortigara, G.; Jozet-Alves, C. Visual asymmetries in cuttlefish during brightness matching for camouflage. Curr. Biol. 2018, 28, 925–926. [Google Scholar] [CrossRef] [Green Version]
- Schnell, A.; Jozet-Alves, C.; Hall, K.; Radday, L.; Hanlon, R. Fighting and mating success in giant Australian cuttlefish is influenced by behavioural lateralization. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182507. [Google Scholar] [CrossRef] [Green Version]
- Wells, M.J. Octopus: Physiology and Behaviour of an Advanced Invertebrate; Chapman & Hall: London, UK, 1978. [Google Scholar]
- Sutherland, N. Visual Discrimination of Shape by Octopus. Q. J. Exp. Psychol. 1959, 11, 24–32. [Google Scholar] [CrossRef]
- Hanlon, R.; Messenger, J. Cephalopod Behaviour, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Mather, J. Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool. 1991, 224, 27–39. [Google Scholar] [CrossRef]
- Papini, M.; Bitterman, M. Appetitive conditioning in Octopus cyanea. J. Comp. Psychol. 1991, 105, 107–114. [Google Scholar] [CrossRef]
- De Haan, E.; Corballis, P.; Hillyard, S.; Marzi, C.; Seth, A.; Lamme, V.; Volz, L.; Fabri, M.; Schechter, E.; Bayne, T.; et al. Split-Brain: What We Know Now and Why This is Important for Understanding Consciousness. Neuropsychol. Rev. 2020, 30, 224–233. [Google Scholar] [CrossRef]
- Muntz, W.; Gwyther, J. Visual Discrimination of Distance by Octopuses. J. Exp. Biol. 1988, 140, 345–353. [Google Scholar] [CrossRef]
- Muntz, W. An Experiment on Shape Discrimination and Signal Detection in Octopus. Q. J. Exp. Psychol. 1970, 22, 82–90. [Google Scholar] [CrossRef]
- Muntz, W. Intraretinal Transfer and the Function of the Optic Lobes in Octopus. Q. J. Exp. Psychol. 1963, 15, 116–124. [Google Scholar] [CrossRef]
- Wells, M. Detour Experiments with Octopuses. J. Exp. Biol. 1964, 41, 621–642. [Google Scholar] [CrossRef]
- Wells, M. Short-Term Learning and Interocular Transfer in Detour Experiments with Octopuses. J. Exp. Biol. 1967, 47, 393–408. [Google Scholar] [CrossRef]
- Wells, M. Detour Experiments with Split-Brain Octopuses. J. Exp. Biol. 1970, 53, 375–389. [Google Scholar] [CrossRef]
- Wells, M. Functional Evidence for Neurone Fields Representing the Individual Arms Within the Central Nervous System of Octopus. J. Exp. Biol. 1959, 36, 501–511. [Google Scholar] [CrossRef]
- Wells, M.; Young, J. Lateral Interaction and Transfer in the Tactile Memory of the Octopus. J. Exp. Biol. 1966, 45, 383–400. [Google Scholar] [CrossRef]
- Wells, M.J. Taste by touch: Some experiments with Octopus. J. Exp. Biol. 1963, 40, 187–193. [Google Scholar] [CrossRef]
- Kier, W.; Stella, M. The arrangement and function of octopus arm musculature and connective tissue. J. Morphol. 2007, 268, 831–843. [Google Scholar] [CrossRef]
- Godfrey-Smith, P. Integration, lateralization, and animal experience. Mind Lang. 2020, 36, 285–296. [Google Scholar] [CrossRef]
- Porcher, I. The perfecting of the octopus. Anim. Sentience 2019, 4, 15. [Google Scholar] [CrossRef]
- Grasso, F.W. The Octopus with Two Brains: How are Distributed and Central Representations Integrated in the Octopus Central Nervous System? In Cephalopod Cognition; Darmaillacq, A.-S., Dickel, L., Mather, J.A., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 94–122. [Google Scholar]
- Young, J.Z. Anatomy of the Nervous System of Octopus vulgaris. J. Anat. 1971, 112, 650–659. [Google Scholar]
- Rowell, C. Excitatory and Inhibitory Pathways in the Arm of Octopus. J. Exp. Biol. 1963, 40, 257–270. [Google Scholar] [CrossRef]
- Rowell, C. Activity of Interneurones in the Arm of Octopus in Response to Tactile Stimulation. J. Exp. Biol. 1966, 44, 589–605. [Google Scholar] [CrossRef]
- Zullo, L.; Eichenstein, H.; Maiole, F.; Hochner, B. Motor control pathways in the nervous system of Octopus vulgaris arm. J. Comp. Physiol. A 2019, 205, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Gutfreund, Y.; Matzner, H.; Flash, T.; Hochner, B. Patterns of Motor Activity in the Isolated Nerve Cord of the Octopus Arm. Biol. Bull. 2006, 211, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Carls-Diamante, S. The octopus and the unity of consciousness. Biol. Philos. 2017, 32, 1269–1287. [Google Scholar] [CrossRef]
- Mather, J.A.; Alupay, J. An ethogram for benthic octopods (Cephalopoda: Octopodidae). J. Comp. Psychol. 2016, 130, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, E.; Buresch, K.; Boinapally, P.; Hanlon, R. Octopus arms exhibit exceptional flexibility. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Grasso, F. Octopus sucker-arm coordination in grasping and manipulation. Am. Malacol. Bull. 2008, 24, 13–23. [Google Scholar] [CrossRef]
- Levy, G.; Flash, T.; Hochner, B. Arm coordination in octopus crawling involved unique motor control strategies. Curr. Biol. 2015, 26, 1195–1290. [Google Scholar] [CrossRef] [Green Version]
- Huffard, C. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): Walking the line between primary and secondary defenses. J. Exp. Biol. 2006, 209, 3697–3707. [Google Scholar] [CrossRef] [Green Version]
- Gutfreund, Y.; Flash, T.; Yarom, Y.; Fiorito, G.; Segev, I.; Hochner, B. Organization of Octopus Arm Movements: A Model System for Studying the Control of Flexible Arms. J. Neurosci. 1996, 16, 7297–7307. [Google Scholar] [CrossRef]
- Hanassy, S.; Botvinnik, A.; Flash, T.; Hochner, B. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation. Bioinspiration Biomim. 2015, 10, 35001. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.; Hochner, B.; Kuba, M. Octopus arm movements under constrained conditions: Adaptation, modification and plasticity of motor primitives. J. Exp. Biol. 2015, 218, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Mather, J. How do octopuses use their arms? J. Comp. Psychol. 1998, 112, 306–316. [Google Scholar] [CrossRef]
- Byrne, R.; Kuba, M.; Meisel, D.; Griebel, U.; Mather, J. Does Octopus vulgaris have preferred arms? J. Comp. Psychol. 2006, 120, 198–204. [Google Scholar] [CrossRef]
- Gutnick, T.; Byrne, R.; Hochner, B.; Kuba, M. Octopus vulgaris Uses Visual Information to Determine the Location of Its Arm. Curr. Biol. 2011, 21, 460–462. [Google Scholar] [CrossRef] [Green Version]
- Gutnick, T.; Zullo, L.; Hochner, B.; Kuba, M. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris. Curr. Biol. 2020, 30, 4322–4327. [Google Scholar] [CrossRef]
- Shigeno, S.; Andrews, V.L.R.; Ponte, G.; Fiorito, G. Cephalopod brains: An overview of current knowledge to facilitate comparison with vertebrates. Front. Physiol. 2018, 9, 952. [Google Scholar] [CrossRef]
- Roh, J.; Cheung, V.; Bizzi, E. Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol. 2011, 106, 1363–1378. [Google Scholar] [CrossRef] [Green Version]
- Mather, J. Octopus Consciousness: The Role of Perceptual Richness. NeuroSci 2021, 2, 276–290. [Google Scholar] [CrossRef]
- Mather, J.A.; Leite, T.S.; Anderson, R.A.; Wood, J.B. Foraging and Cognitive Competence in Octopuses. In Cephalopod Cognition; Darmaillacq, A.-S., Dickel, L., Mather, J.A., Eds.; Cambridge U Press: Cambridge, UK, 2014; pp. 126–149. [Google Scholar]
- Hanke, F.; Kelber, A. The Eye of the Common Octopus (Octopus vulgaris). Front. Physiol. 2020, 10, 1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Giesen, L.; Kilian, P.; Allard, C.; Bellono, N. Molecular Basis of Chemotactile Sensation in Octopus. Cell 2020, 183, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Anraku, K.; Archdale, M.; Hatanaka, K.; Marui, T. Chemical Stimuli and Feeding Behavior in Octopus, Octopus vulgaris. Phuket Mar. Biol. Cent. Res. Bull. 2005, 66, 221–227. [Google Scholar]
- Allen, J.; Mäthger, L.; Barbosa, A.; Hanlon, R. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. J. Comp. Physiol. A 2009, 195, 547–555. [Google Scholar] [CrossRef]
- Fiorito, G.; von Planta, C.; Scotto, P. Problem solving ability of Octopus vulgaris Lamarck (Mollusca, Cephalopoda). Behav. Neural Biol. 1990, 53, 217–230. [Google Scholar] [CrossRef]
- Fiorito, G.; Biederman, G.; Davey, V.; Gherardi, F. The role of stimulus preexposure in problem solving by Octopus vulgaris. Anim. Cogn. 1998, 1, 107–112. [Google Scholar] [CrossRef]
- Anderson, R.C.; Mather, J.A. It’s all in the cues: Octopuses (Enteroctopus dofleini) learn to open jars. Ferrantia 2010, 59, 8–13. [Google Scholar]
- Maselli, V.; Al-Soudy, A.; Buglione, M.; Aria, M.; Polese, G.; Di Cosmo, A. Sensorial Hierarchy in Octopus vulgaris’s Food Choice: Chemical vs. Visual. Animals 2020, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Onthank, K.; Cowles, D. Prey selection in Octopus rubescens: Possible roles of energy budgeting and prey nutritional composition. Mar. Biol. 2011, 158, 2795–2804. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mather, J. The Case for Octopus Consciousness: Unity. NeuroSci 2021, 2, 405-415. https://doi.org/10.3390/neurosci2040030
Mather J. The Case for Octopus Consciousness: Unity. NeuroSci. 2021; 2(4):405-415. https://doi.org/10.3390/neurosci2040030
Chicago/Turabian StyleMather, Jennifer. 2021. "The Case for Octopus Consciousness: Unity" NeuroSci 2, no. 4: 405-415. https://doi.org/10.3390/neurosci2040030
APA StyleMather, J. (2021). The Case for Octopus Consciousness: Unity. NeuroSci, 2(4), 405-415. https://doi.org/10.3390/neurosci2040030