Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications
Abstract
:1. Introduction
2. AI in Anesthesia
3. Ethical Implications
Scientific Output, Ongoing Research, and Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moon, J.S.; Cannesson, M. A Century of Technology in Anesthesia & Analgesia. Anesth. Analg. 2022, 135 (Suppl. S2), S48–S61. [Google Scholar] [CrossRef]
- Petermann, H.; Böhrer, H.; Witte, W. Von der Äthernarkose zur “grünen” Anästhesie: Herausforderungen in der Anästhesiologie der letzten 175 Jahre [From ether anesthesia to “green” anesthesia: Challenges in anesthesiology over the last 175 years]. Anaesthesist 2021, 70, 832–842. [Google Scholar] [CrossRef]
- Stanfill, M.H.; Marc, D.T. Health Information Management: Implications of Artificial Intelligence on Healthcare Data and Information Management. Yearb. Med. Inform. 2019, 28, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Bellini, V.; Valente, M.; Gaddi, A.V.; Pelosi, P.; Bignami, E. Artificial intelligence and telemedicine in anesthesia: Potential and problems. Minerva Anestesiol. 2022, 88, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Bihorac, A.; Ozrazgat-Baslanti, T.; Ebadi, A.; Motaei, A.; Madkour, M.; Pardalos, P.M.; Lipori, G.; Hogan, W.R.; Efron, P.A.; Moore, F.; et al. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann. Surg. 2019, 269, 652–662. [Google Scholar] [CrossRef]
- Lee, H.C.; Ryu, H.G.; Chung, E.J.; Jung, C.W. Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil: A Deep Learning Approach. Anesthesiology 2018, 128, 492–501. [Google Scholar] [CrossRef]
- Hofer, I.S.; Lee, C.; Gabel, E.; Baldi, P.; Cannesson, M. Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set. NPJ Digit. Med. 2020, 3, 58. [Google Scholar] [CrossRef]
- Hewson, D.W.; Bedforth, N.M. Closing the gap: Artificial intelligence applied to ultrasound-guided regional anaesthesia. Br. J. Anaesth. 2023, 130, 245–247. [Google Scholar] [CrossRef]
- Kovarik, C.L.; Sanabria, B.; Stoff, B.K. Image Consent and the Development of Image-Based Artificial Intelligence. JAMA Dermatol. 2022, 158, 589. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Hu, J. Bias in Artificial Intelligence: Basic Primer. Clin. J. Am. Soc. Nephrol. 2023, 18, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Solanki, S.L.; Pandrowala, S.; Nayak, A.; Bhandare, M.; Ambulkar, R.P.; Shrikhande, S.V. Artificial intelligence in perioperative management of major gastrointestinal surgeries. World J. Gastroenterol. 2021, 27, 2758–2770. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, J.J.; Huang, S.H.; Kuo, C.L.; Chen, J.Y.; Liu, C.F.; Chu, C.C. Implementation of a machine learning application in preoperative risk assessment for hip repair surgery. BMC Anesthesiol. 2022, 22, 116. [Google Scholar] [CrossRef] [PubMed]
- Chiew, C.J.; Liu, N.; Wong, T.H.; Sim, Y.E.; Abdullah, H.R. Utilizing Machine Learning Methods for Preoperative Prediction of Postsurgical Mortality and Intensive Care Unit Admission. Ann. Surg. 2020, 272, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Corey, K.M.; Kashyap, S.; Lorenzi, E.; Lagoo-Deenadayalan, S.A.; Heller, K.; Whalen, K.; Balu, S.; Heflin, M.T.; McDonald, S.R.; Swaminathan, M.; et al. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study. PLoS Med. 2018, 15, e1002701. [Google Scholar] [CrossRef]
- Neckebroek, M.; Ionescu, C.M.; van Amsterdam, K.; De Smet, T.; De Baets, P.; Decruyenaere, J.; De Keyser, R.; Struys, M.M.R.F. A comparison of propofol-to-BIS post-operative intensive care sedation by means of target controlled infusion, Bayesian-based and predictive control methods: An observational, open-label pilot study. J. Clin. Monit. Comput. 2019, 33, 675–686. [Google Scholar] [CrossRef]
- Härkänen, M.; Haatainen, K.; Vehviläinen-Julkunen, K.; Miettinen, M. Artificial Intelligence for Identifying the Prevention of Medication Incidents Causing Serious or Moderate Harm: An Analysis Using Incident Reporters’ Views. Int. J. Environ. Res. Public Health 2021, 18, 9206. [Google Scholar] [CrossRef] [PubMed]
- Syrowatka, A.; Song, W.; Amato, M.G.; Foer, D.; Edrees, H.; Co, Z.; Kuznetsova, M.; Dulgarian, S.; Seger, D.L.; Simona, A.; et al. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: A scoping review. Lancet Digit. Health 2022, 4, e137–e148. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Witkowski, E.; Gao, L.; Meireles, O.; Rosman, G. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations. Anesthesiology 2020, 132, 379–394. [Google Scholar] [CrossRef]
- Nagireddi, J.N.; Vyas, A.K.; Sanapati, M.R.; Soin, A.; Manchikanti, L. The Analysis of Pain Research through the Lens of Artificial Intelligence and Machine Learning. Pain Physician 2022, 25, E211–E243. [Google Scholar]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E.G. Integrating data science and neural architecture techniques for automatic pain assessment in critically ill patients. Anaesth. Crit. Care Pain Med. 2023, 42, 101220. [Google Scholar] [CrossRef]
- Cobianchi, L.; Piccolo, D.; Dal Mas, F.; Agnoletti, V.; Ansaloni, L.; Balch, J.; Biffl, W.; Butturini, G.; Catena, F.; Coccolini, F.; et al. Surgeons’ perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: Results from an international survey. World J. Emerg. Surg. 2023, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- McCoy, A.; Das, R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2017, 6, e000158. [Google Scholar] [CrossRef]
- Loftus, T.J.; Vlaar, A.P.J.; Hung, A.J.; Bihorac, A.; Dennis, B.M.; Juillard, C.; Hashimoto, D.A.; Kaafarani, H.M.A.; Tighe, P.J.; Kuo, P.C.; et al. Executive summary of the artificial intelligence in surgery series. Surgery 2022, 171, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, S.; Chat, G.P. Open artificial intelligence platforms in nursing education: Tools for academic progress or abuse? Nurse Educ. Pract. 2023, 66, 103537. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. J. Med. Syst. 2023, 47, 33. [Google Scholar] [CrossRef] [PubMed]
- Bellini, V.; Cascella, M.; Cutugno, F.; Russo, M.; Lanza, R.; Compagnone, C.; Bignami, E.G. Understanding basic principles of Artificial Intelligence: A practical guide for intensivists. Acta Biomed. 2022, 93, e2022297. [Google Scholar] [CrossRef]
- Hassan, A.M.; Rajesh, A.; Asaad, M.; Nelson, J.A.; Coert, J.H.; Mehrara, B.J.; Butler, C.E. A Surgeon’s Guide to Artificial Intelligence-Driven Predictive Models. Am. Surg. 2023, 89, 11–19. [Google Scholar] [CrossRef]
- Freundlich, R.E.; Ehrenfeld, J.M. Anesthesia information management: Clinical decision support. Curr. Opin. Anaesthesiol. 2017, 30, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.M.; Aasvang, E.K.; Meyhoff, C.S.; Dissing Sorensen, H.B. Towards an automated multimodal clinical decision support system at the post anesthesia care unit. Comput. Biol. Med. 2018, 101, 15–21. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Liu, W.; Shih, P.C.; Bao, J. Automatic Surgery and Anesthesia Emergence Duration Prediction Using Artificial Neural Networks. J. Healthc. Eng. 2022, 2022, 2921775. [Google Scholar] [CrossRef] [PubMed]
- Wingert, T.; Lee, C.; Cannesson, M. Machine Learning, Deep Learning, and Closed Loop Devices-Anesthesia Delivery. Anesthesiol. Clin. 2021, 39, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, M.; Arbeid, E.; Cyr, S.; Mathieu, P.A.; Taddei, R.; Morse, J.; Hemmerling, T.M. A technical description of a novel pharmacological anesthesia robot. J. Clin. Monit. Comput. 2014, 28, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hemmerling, T.M.; Wehbe, M.; Zaouter, C.; Taddei, R.; Morse, J. The Kepler intubation system. Anesth. Analg. 2012, 114, 590–594. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, B.D.; O’Sullivan, O.; Gal-lagher, A.G.; Shorten, G.D. Robotic assistance with needle guidance. Br. J. Anaesth. 2015, 114, 708–709. [Google Scholar] [CrossRef]
- Cobianchi, L.; Verde, J.M.; Loftus, T.J.; Piccolo, D.; Dal Mas, F.; Mascagni, P.; Garcia Vazquez, A.; Ansaloni, L.; Marseglia, G.R.; Massaro, M.; et al. Artificial Intelligence and Surgery: Ethical Dilemmas and Open Issues. J. Am. Coll. Surg. 2022, 235, 268–275. [Google Scholar] [CrossRef]
- Cascella, M.; Montomoli, J.; Bellini, V.; Vittori, A.; Biancuzzi, H.; Dal Mas, F.; Bignami, E.G. Crossing the AI Chasm in Neurocritical Care. Computers 2023, 12, 83. [Google Scholar] [CrossRef]
- Panch, T.; Mattie, H.; Atun, R. Artificial intelligence and algorithmic bias: Implications for health systems. J. Glob. Health 2019, 9, 010318. [Google Scholar] [CrossRef]
- Bellini, V.; Petroni, A.; Palumbo, G.; Bignami, E. Data quality and blockchain technology. Anaesth. Crit. Care Pain Med. 2019, 38, 521–522. [Google Scholar] [CrossRef]
- Raimundo, R.; Rosário, A. The Impact of Artificial Intelligence on Data System Security: A Literature Review. Sensors 2021, 21, 7029. [Google Scholar] [CrossRef]
- Harvey, H.B.; Gowda, V. Regulatory Issues and Challenges to Artificial Intelligence Adoption. Radiol. Clin. N. Am. 2021, 59, 1075–1083. [Google Scholar] [CrossRef]
- Nifakos, S.; Chandramouli, K.; Nikolaou, C.K.; Papachristou, P.; Koch, S.; Panaousis, E.; Bonacina, S. Influence of Human Factors on Cyber Security within Healthcare Organisations: A Systematic Review. Sensors 2021, 21, 5119. [Google Scholar] [CrossRef] [PubMed]
- Health Insurance Portability and Accountability Act of 1996 (HIPAA). Available online: https://www.cdc.gov/phlp/publications/topic/hipaa.html (accessed on 20 April 2023).
- Conroy, M.C.; Lacey, B.; Bešević, J.; Omiyale, W.; Feng, Q.; Effingham, M.; Sellers, J.; Sheard, S.; Pancholi, M.; Gregory, G.; et al. UK Biobank: A globally important resource for cancer research. Br. J. Cancer 2023, 128, 519–527. [Google Scholar] [CrossRef]
- Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-year legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 2019, 16, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Luo, D.; Zhong, N.; Li, D.; Zheng, J.; Liao, H.; Li, Z.; Lin, X.; Chen, Q.; Zhang, C.; et al. GPC2 Is a Potential Diagnostic, Immunological, and Prognostic Biomarker in Pan-Cancer. Front. Immunol. 2022, 13, 857308. [Google Scholar] [CrossRef] [PubMed]
- Coppola, L.; Cianflone, A.; Grimaldi, A.M.; Incoronato, M.; Bevilacqua, P.; Messina, F.; Baselice, S.; Soricelli, A.; Mirabelli, P.; Salvatore, M. Biobanking in health care: Evolution and future directions. J. Transl. Med. 2019, 17, 172. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Precise4Q Consortium. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Arbelaez Ossa, L.; Starke, G.; Lorenzini, G.; Vogt, J.E.; Shaw, D.M.; Elger, B.S. Re-focusing explainability in medicine. Digit. Health 2022, 8, 1074488. [Google Scholar] [CrossRef] [PubMed]
- Koski, E.; Murphy, J. AI in Healthcare. Stud. Health Technol. Inform. 2021, 284, 295–299. [Google Scholar] [CrossRef]
- Banja, J. How Might Artificial Intelligence Applications Impact Risk Management? AMA J. Ethics. 2020, 22, E945–E951. [Google Scholar] [CrossRef]
- Keskinbora, K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019, 64, 277–282. [Google Scholar] [CrossRef]
- Alexander, J.C.; Romito, B.T.; Çobanoğlu, M.C. The present and future role of artificial intelli-gence and machine learning in anesthesiology. Int. Anesthesiol. Clin. 2020, 58, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Perri, F.; Ottaiano, A.; Cuomo, A.; Wirz, S.; Coluccia, S. Trends in Research on Artificial Intelligence in Anesthesia: A VOSviewer-Based Biblio-metric Analysis. Intel. Artificial. 2022, 25, 126–137. [Google Scholar] [CrossRef]
- Miyaguchi, N.; Takeuchi, K.; Kashima, H.; Morita, M.; Morimatsu, H. Predicting anesthetic infusion events using machine learning. Sci. Rep. 2021, 11, 23648. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; You, J.; Peng, Y.; Feng, Y. Machine Learning Algorithm Using Electronic Chart-Derived Data to Predict Delirium after Elderly Hip Fracture Surgeries: A Retrospective Case-Control Study. Front. Surg. 2021, 8, 634629. [Google Scholar] [CrossRef]
- Walczak, S.; Velanovich, V. Prediction of perioperative transfusions using an artificial neural network. PLoS ONE 2020, 15, e0229450. [Google Scholar] [CrossRef]
- Afshar, S.; Boostani, R.; Sanei, S. A Combinatorial Deep Learning Structure for Precise Depth of Anesthesia Estimation from EEG Signals. IEEE J. Biomed. Health Inform. 2021, 25, 3408–3415. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Bimonte, S.; Di Napoli, R. Delayed Emergence from Anesthesia: What We Know and How We Act. Local Reg. Anesth. 2020, 13, 195–206. [Google Scholar] [CrossRef]
- Cuendet, G.L.; Schoettker, P.; Yüce, A.; Sorci, M.; Gao, H.; Perruchoud, C.; Thiran, J.-P. Facial Image Analysis for Fully Automatic Prediction of Difficult Endotracheal Intubation. IEEE Trans. Biomed. Eng. 2016, 63, 328–339. [Google Scholar] [CrossRef]
- Joosten, A.; Alexander, B.; Duranteau, J.; Taccone, F.S.; Creteur, J.; Vincent, J.L.; Cannesson, M.; Rinehart, J. Feasibility of closed-loop titration of norepinephrine infusion in patients undergoing moderate- and high-risk surgery. Br. J. Anaesth 2019, 123, 430–438. [Google Scholar] [CrossRef]
- Connor, C.W. Artificial Intelligence and Machine Learning in Anesthesiology. Anesthesiology 2019, 131, 1346–1359. [Google Scholar] [CrossRef]
- Lee, M.; Sanz, L.R.D.; Barra, A.; Wolff, A.; Nieminen, J.O.; Boly, M.; Rosanova, M.; Casarotto, S.; Bodart, O.; Annen, J.; et al. Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning. Nat. Commun. 2022, 13, 1064. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, H.; Jalali, A.; Gálvez, J.A.; Ahumada, L.M.; Simpao, A.F. Artificial Intelligence in Anesthesiology: Hype, Hope, and Hurdles. Anesth. Analg. 2020, 130, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Nath, G. Artificial intelligence and anesthesia: A narrative review. Saudi. J. Anaesth. 2022, 16, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Stradolini, F.; Tuoheti, A.; Kilic, T.; Ntella, S.L.; Tamburrano, N.; Huang, Z.; De Micheli, G.; Demarchi, D.; Carrara, S. An IoT Solution for Online Monitoring of Anesthetics in Human Serum Based on an Integrated Fluidic Bioelectronic System. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1056–1064. [Google Scholar] [CrossRef]
- Privorotskiy, A.; Garcia, V.A.; Babbitt, L.E.; Choi, J.E.; Cata, J.P. Augmented reality in anesthesia, pain medicine and critical care: A narrative review. J. Clin. Monit. Comput. 2022, 36, 33–39. [Google Scholar] [CrossRef]
- Viderman, D.; Dossov, M.; Seitenov, S.; Lee, M.H. Artificial intelligence in ultrasound-guided regional anesthesia: A scoping review. Front. Med. 2022, 9, 994805. [Google Scholar] [CrossRef]
Application | Strategy | [Refs.] |
---|---|---|
Presurgical Evaluation | Preoperative management and planning. | [9,14] |
Anesthetic Dosage Optimization | AI algorithms can analyze a patient’s medical history, physiological data, and other factors to determine the most appropriate anesthetic dose, which can improve patient safety and minimize complications. | [6,15] |
Preventing Drug Errors | AI-powered systems can help prevent drug administration errors by verifying medication orders, drug interactions, and dosages. | [16,17] |
Early Detection of Complications | AI can be used to analyze various data streams in real time to detect patterns or anomalies that may indicate a potential complication, such as hypoxia and hypotension. | [4,18] |
Predicting Patient Outcomes | Machine learning algorithms can be used to predict the likelihood of complications or adverse outcomes during surgery, allowing anesthesiologists to make more informed decisions about patient care. | [12] |
Predicting Postsurgical ICU Admission | Various machine learning algorithms can be employed to develop predictive models from data, such as patient demographics, medical history, surgical procedures, vital signs, laboratory values, and other clinical factors. | [13] |
Automated Monitoring | AI-powered monitoring systems can continuously track a patient’s vital signs, such as heart rate, blood pressure, and oxygen saturation, and alert the anesthesiologist to any potential problems. | [18] |
Automated Anesthesia Dosing | AI can help tailor anesthesia delivery and optimize closed-loop systems based on patient data. | [4,6] |
Pain Management | AI can help adjust the dosage and administering of drugs to achieve optimal postoperative pain control. | [19,20] |
Real-Time Decision Support | AI algorithms can provide real-time decision support to anesthesiologists during surgery, such as recommending alternative drug options if a patient is not responding to the initial anesthetic. | [21] |
Postoperative Monitoring | AI can help monitor patients postoperatively, predicting and detecting any adverse events that might occur, and giving alerts and recommendations to physicians. | [22] |
Resource Allocation | AI algorithms can help optimize the use of anesthesia resources by identifying the best candidates for specific procedures and reducing unnecessary anesthesia use. | [23] |
Training and Education | AI can be used to simulate scenarios and train anesthesiologists to handle challenging situations, such as unexpected complications during surgery. | [24,25] |
Image Recognition | AI algorithms can analyze medical images to identify anatomical structures and guide the placement of regional anesthesia techniques. | [8] |
Research and Analysis | AI can help analyze vast amounts of data from anesthesia records, patient charts, and other sources to identify patterns, trends, and insights that could help improve patient outcomes and safety. | [26,27] |
Issue | Notes | [Refs.] |
---|---|---|
Bias and discrimination | AI systems may perpetuate biases and discrimination if they are trained on biased data. | [37,38,39] |
Privacy and security | It is mandatory to establish robust security protocols. | [41,42,43,44,45,46] |
Accountability and transparency | Model explainability is the ability of AI and machine learning models to provide clear and interpretable explanations of their decision-making process. | [47,48] |
Access to healthcare | AI systems may exacerbate existing disparities in access to healthcare, as the use of AI may require expensive technology or specialized training that is not available to all healthcare providers. | [49] |
Regulatory processes | Governments and other stakeholders must define technical standards for ensuring the accuracy, reliability, and safety of AI systems, as well as guidelines for the ethical use of AI. | [40] |
Biorepositories | Ethical guidelines and protocols, as well as uniform methodological approaches and international standards, are required. | [43,44,45,46] |
Ethicists involvement | Ethicists should be involved in AI projects from the beginning. | [50,51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascella, M.; Tracey, M.C.; Petrucci, E.; Bignami, E.G. Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications. Surgeries 2023, 4, 264-274. https://doi.org/10.3390/surgeries4020027
Cascella M, Tracey MC, Petrucci E, Bignami EG. Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications. Surgeries. 2023; 4(2):264-274. https://doi.org/10.3390/surgeries4020027
Chicago/Turabian StyleCascella, Marco, Maura C. Tracey, Emiliano Petrucci, and Elena Giovanna Bignami. 2023. "Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications" Surgeries 4, no. 2: 264-274. https://doi.org/10.3390/surgeries4020027
APA StyleCascella, M., Tracey, M. C., Petrucci, E., & Bignami, E. G. (2023). Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications. Surgeries, 4(2), 264-274. https://doi.org/10.3390/surgeries4020027