An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather
Abstract
:1. Introduction
2. Challenges in Cold Weather Concrete Construction
2.1. Setting and Curing
2.1.1. Setting
2.1.2. Curing
2.1.3. Strategies to Prevent Setting and Curing Challenges
2.2. Strength Development
2.2.1. Factors Affecting the Strength Development in Cold Weather
2.2.2. Consequences of Slow Strength Development
2.2.3. Measures to Mitigate Slow Strength Development
2.3. Freezing of Concrete
2.3.1. Frost Damage
2.3.2. Early Freezing
2.3.3. Freezing and Thawing
2.3.4. Preventive Measures
2.4. Weather-Related Challenges in Construction
2.4.1. Challenges for Personnel
2.4.2. Challenges for Equipment and Machinery
2.4.3. Challenges for Site Management
2.4.4. Additional Weather-Related Challenges
3. Materials, Technologies, and Strategies for Cold Weather
3.1. Advanced Concrete Mix Designs
3.2. Cold Weather Concreting Techniques
3.3. Protective Measures and Insulation
3.4. Advanced Monitoring and Quality Control
3.5. Prefabrication and Modular Construction
4. Emerging Materials, Technologies, and Strategies
4.1. Smart Concrete Materials and Their Production
4.2. Advanced Manufacturing and Construction Technologies
4.3. Integrated Design and Optimization Technologies
4.4. Sustainability and Resilience in Cold Weather Concrete Construction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statista. Global Cement Production from 1995 to 2022. Available online: https://www.statista.com/statistics/219343/cement-production-worldwide/ (accessed on 27 April 2023).
- Monteiro, P.J.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
- Demissew, A. Comparative analysis of selected concrete mix design methods based on cost-effectiveness. Adv. Civ. Eng. 2022, 2022, 4240774. [Google Scholar] [CrossRef]
- Tang, S.W.; Yao, Y.; Andrade, C.; Li, Z.J. Recent durability studies on concrete structure. Cem. Concr. Res. 2015, 78, 143–154. [Google Scholar] [CrossRef]
- Mather, B. Concrete durability. Cem. Concr. Compos. 2004, 26, 3–4. [Google Scholar] [CrossRef]
- Mathews, M.E.; Nandhagopal, M.; Anand, N.; Arulraj, G.P. Versatility at its best: An integrated review on development of self-compacting concrete. Int. J. Sci. Tech. Res. 2019, 8, 513–519. [Google Scholar]
- Hegger, J.; Curbach, M.; Stark, A.; Wilhelm, S.; Farwig, K. Innovative design concepts: Application of textile reinforced concrete to shell structures. Struct. Concr. 2018, 19, 637–646. [Google Scholar] [CrossRef]
- Kozikowski, R.L.; McCall, W.C.; Suprenant, B.A. Cold weather concreting strategies. Concr. Internat. 2014, 36, 45–49. [Google Scholar]
- Korhonen, C. New developments in cold-weather concreting. In Proceedings of the 11th International Conference on Cold Regions Engineering, Anchorage, AK, USA, 20–22 May 2002. [Google Scholar]
- Nmai, C.K. Cold weather concreting admixtures. Cem. Concr. Compos. 1998, 20, 121–128. [Google Scholar] [CrossRef]
- Barna, L.A.; Seman, P.M.; Korhonen, C.J. Energy-efficient approach to cold-weather concreting. J. Mater. Civ. Eng. 2011, 23, 1544–1551. [Google Scholar] [CrossRef]
- Chen, S.; Lu, W.; Olofsson, T.; Dehghanimohammadabadi, M.; Emborg, M.; Nilimaa, J.; Wang, Y.; Feng, K. Concrete Construction: How to Explore Environmental and Economic Sustainability in Cold Climates. Sustainability 2020, 12, 3809. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Urbanization. Available online: https://ourworldindata.org/urbanization (accessed on 29 April 2023).
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E.; Rodés-Guirao, L. World Population Growth. Available online: https://ourworldindata.org/world-population-growth (accessed on 29 April 2023).
- Ryou, J.S.; Lee, Y.S. Properties of early-stage concrete with setting-accelerating tablet in cold weather. Mater. Sci. Eng. A 2012, 532, 84–90. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, W.; Ma, G. Electric activation curing behaviour of reinforced concrete beam under severely-cold environment: Breakthrough of rapid concrete manufacturing at cold region. Constr. Build. Mater. 2023, 384, 131443. [Google Scholar] [CrossRef]
- Ortiz, J.; Aguado, A.; Agulló, L.; Garcia, T. Influence of environmental temperatures on the concrete compressive strength: Simulation of hot and cold weather conditions. Cem. Concr. Res. 2005, 35, 1970–1979. [Google Scholar] [CrossRef]
- Nilimaa, J.; Zhaka, V. Material and Environmental Aspects of Concrete Flooring in Cold Climate. Constr. Mater. 2023, 3, 180–201. [Google Scholar] [CrossRef]
- Şahin, Y.; Akkaya, Y.; Taşdemir, M.A. Effects of freezing conditions on the frost resistance and microstructure of concrete. Constr. Build. Mater. 2021, 270, 121458. [Google Scholar] [CrossRef]
- Sang, Y.; Yang, Y. Assessing the freezing process of early age concrete by resistivity method. Constr. Build. Mater. 2020, 238, 117689. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Z.; Li, Y.; Wang, K.; Zhang, H. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment. Constr. Build. Mater. 2022, 321, 126371. [Google Scholar] [CrossRef]
- Chen, H.; Cao, Y.; Liu, Y.; Qin, Y.; Xia, L. Enhancing the durability of concrete in severely cold regions: Mix proportion optimization based on machine learning. Constr. Build. Mater. 2023, 371, 130644. [Google Scholar] [CrossRef]
- Demirboğa, R.; Karagöl, F.; Polat, R.; Kaygusuz, M.A. The effects of urea on strength gaining of fresh concrete under the cold weather conditions. Constr. Build. Mater. 2014, 64, 114–120. [Google Scholar] [CrossRef]
- Kothari, A.; Habermehl-Cwirzen, K.; Hedlund, H.; Cwirzen, A. A Review of the Mechanical Properties and Durability of Ecological Concretes in a Cold Climate in Comparison to Standard Ordinary Portland Cement-Based Concrete. Materials 2020, 13, 3467. [Google Scholar] [CrossRef]
- Qu, Z.; Yu, Q.; Ong, G.P.; Cardinaels, R.; Ke, L.; Long, Y.; Geng, G. 3D printing concrete containing thermal responsive gelatin: Towards cold environment applications. Cem. Concr. Compos. 2023, 140, 105029. [Google Scholar] [CrossRef]
- Han, B.; Wang, Y.; Dong, S.; Zhang, L.; Ding, S.; Yu, X.; Ou, J. Smart concretes and structures: A review. J. Intell. Mater. Syst. Struct. 2015, 26, 1303–1345. [Google Scholar] [CrossRef]
- Golroo, A.; Tighe, S.L. Pervious concrete pavement performance modeling: An empirical approach in cold climates. Can. J. Civ. Eng. 2012, 39, 1100–1112. [Google Scholar] [CrossRef]
- Provost-Smith, D.J.; Elsayed, M.; Nehdi, M.L. Effect of early-age subfreezing temperature on grouted dowel precast concrete wall connections. Constr. Build. Mater. 2017, 140, 385–394. [Google Scholar] [CrossRef]
- Shlyakhtina, T.F.; Ivankova, E.A.; Popov, N.A. Winter concrete: Problems and solutions. IOP Conf. Ser. Earth Environ. Sci. 2021, 75, 012081. [Google Scholar] [CrossRef]
- Sakai, K.; Banthia, N. Integrated Design of Concrete Structures and Technology Development. In Concrete Technology for a Sustainable Development in the 21st Century; E&FN Spon: London, UK, 2000; pp. 14–26. [Google Scholar]
- Shelehov, I.J.; Dorofeeva, N.L.; Shelehov, M.I.; Dorofeev, I.A. Optimization of concrete works technological process in the winter period. IOP Conf. Ser. Earth Environ. Sci. 2021, 751, 012080. [Google Scholar] [CrossRef]
- Sanz-Valle, R.; Naranjo-Valencia, J.C.; Jiménez-Jiménez, D.; Perez-Caballero, L. Linking organizational learning with technical innovation and organizational culture. J. Knowl. Manage. 2011, 15, 997–1015. [Google Scholar] [CrossRef]
- Santiago, P. Achieving Sustainability in Construction Through Digitally Informed Decisions. In Industry 4.0 for the Built Environment: Methodologies, Technologies and Skills; Springer: Berlin/Heidelberg, Germany, 2021; pp. 247–269. [Google Scholar] [CrossRef]
- Schindler, A.K. Prediction of concrete setting. In Proceedings of the RILEM International Symposium on Advances in Concrete through Science and Engineering, Evanston, IL, USA, 25 March 2004. [Google Scholar]
- Hu, J.; Ge, Z.; Wang, K. Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Constr. Build. Mater. 2014, 50, 657–663. [Google Scholar] [CrossRef]
- Yang, K.H.; Moon, G.D.; Jeon, Y.S. Implementing ternary supplementary cementing binder for reduction of the heat of hydration of concrete. J. Clean. Product. 2016, 112, 845–852. [Google Scholar] [CrossRef]
- Schindler, A.K. Concrete Hydration, Temperature Development, and Setting at Early-Ages. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, May 2002. [Google Scholar]
- Wade, S.A.; Nixon, J.M.; Schindler, A.K.; Barnes, R.W. Effect of temperature on the setting behavior of concrete. J. Mater. Civ. Eng. 2010, 22, 214–222. [Google Scholar] [CrossRef]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Lee, T.; Lee, J.; Kim, Y. Effects of admixtures and accelerators on the development of concrete strength for horizontal form removal upon curing at 10 C. Constr. Build. Mater. 2020, 237, 117652. [Google Scholar] [CrossRef]
- Carette, J.; Staquet, S. Monitoring the setting process of eco-binders by ultrasonic P-wave and S-wave transmission velocity measurement: Mortar vs concrete. Constr. Build. Mater. 2016, 110, 32–41. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.; Bao, D.W.; Xie, Y.M. A review of formwork systems for modern concrete construction. Structures 2022, 38, 52–63. [Google Scholar] [CrossRef]
- Krawczyńska-Piechna, A. Comprehensive approach to efficient planning of formwork utilization on the construction site. Proc. Eng. 2017, 182, 366–372. [Google Scholar] [CrossRef]
- Schindler, A.K.; Frank McCullough, B. Importance of concrete temperature control during concrete pavement construction in hot weather conditions. Transp. Res. Rec. 2002, 1813, 3–10. [Google Scholar] [CrossRef]
- Liu, J.; Lee, Y.C.; Bard, J. Material characterization of workability and process imaging for robotic concrete finishing. Constr. Robotics 2021, 5, 73–85. [Google Scholar] [CrossRef]
- Karagöl, F.; Demirboğa, R.; Kaygusuz, M.A.; Yadollahi, M.M.; Polat, R. The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures. Cold Reg. Sci. Tech. 2013, 89, 30–35. [Google Scholar] [CrossRef]
- Aslani, A.; Hachem-Vermette, C. Energy and environmental assessment of high-performance building envelope in cold climate. Energy Build. 2022, 260, 111924. [Google Scholar] [CrossRef]
- Lin, M.C.; Tserng, H.P.; Ho, S.P.; Young, D.L. Developing a construction-duration model based on a historical dataset for building project. J. Civ. Eng. Managem. 2011, 17, 529–539. [Google Scholar] [CrossRef]
- Saravanan, T.J.; Balamonica, K.; Priya, C.B.; Reddy, A.L.; Gopalakrishnan, N. Comparative performance of various smart aggregates during strength gain and damage states of concrete. Smart Mater. Struct. 2015, 24, 085016. [Google Scholar] [CrossRef]
- Taylor, P.C. Curing Concrete; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Hassan, A.; Arif, M.; Shariq, M. Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete. SN Appl. Sci. 2019, 1, 1694. [Google Scholar] [CrossRef]
- Hover, K.C. The influence of water on the performance of concrete. Constr. Build. Mater. 2011, 25, 3003–3013. [Google Scholar] [CrossRef]
- Chyliński, F.; Michalik, A.; Kozicki, M. Effectiveness of Curing Compounds for Concrete. Materials 2022, 15, 2699. [Google Scholar] [CrossRef]
- Al-Gahtani, A.S. Effect of curing methods on the properties of plain and blended cement concretes. Constr. Build. Mater. 2010, 24, 308–314. [Google Scholar] [CrossRef]
- Raheem, A.A.; Soyingbe, A.A.; Emenike, A.J. Effect of curing methods on density and compressive strength of concrete. Int. J. Appl. Sci. Technol. 2013, 3, 55–64. [Google Scholar]
- Huo, X.S.; Wong, L.U. Experimental study of early-age behavior of high performance concrete deck slabs under different curing methods. Constr. Build. Mater. 2006, 20, 1049–1056. [Google Scholar] [CrossRef]
- Tang, Y.; Su, H.; Huang, S.; Qu, C.; Yang, J. Effect of curing temperature on the durability of concrete under highly geothermal environment. Adv. Mater. Sci. Eng. 2017, 2017, 7587853. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; Bhatt, P.P.; Soroushian, P.; Arablouei, A. Temperature and stress development in ultra-high performance concrete during curing. Constr. Build. Mater. 2016, 122, 63–71. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Hu, G.; Duan, W.H.; Shah, S.P. Early-age shrinkage development of ultra-high-performance concrete under heat curing treatment. Constr. Build. Mater. 2017, 131, 767–774. [Google Scholar] [CrossRef]
- Nilimaa, J.; Hösthagen, A.; Emborg, M. Thermal Crack Risk of Concrete Structures: Evaluation of Theoretical Models for Tunnels and Bridges. Nordic Concr. Res. 2017, 56, 55–69. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64967 (accessed on 16 May 2023).
- Zeyad, A.M.; Tayeh, B.A.; Adesina, A.; de Azevedo, A.R.; Amin, M.; Hadzima-Nyarko, M.; Agwa, I. SReview on effect of steam curing on behavior of concrete. Clean. Mater. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Q.; Yang, Z.; Cui, X.; Liu, F.; Chen, H. Research on the effect of steam curing temperature and duration on the strength of manufactured sand concrete and strength estimation model considering thermal damage. Constr. Build. Mater. 2022, 315, 125531. [Google Scholar] [CrossRef]
- Otieno, M.; Ikotun, J.; Ballim, Y. Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbonation rate in concretes exposed to urban, inland environment. Constr. Build. Mater. 2017, 246, 118443. [Google Scholar] [CrossRef]
- Yu, K.; Jia, M.; Yang, Y.; Liu, Y. A clean strategy of concrete curing in cold climate: Solar thermal energy storage based on phase change material. Appl. Ener. 2021, 331, 120375. [Google Scholar] [CrossRef]
- Jana, D. Concrete scaling—A critical review. In Proceedings of the 29th Conference on Cement Microscopy, Quebec City, QC, Canada, 20–24 May 2007. [Google Scholar]
- Wang, W.C.; Duong, H.T.H.; Zhang, C.H. Influence of accelerating admixtures on high early strength cement performance using heat curing method. Case Stud. Constr. Mater. 2023, 18, e01746. [Google Scholar] [CrossRef]
- Ren, G.; Tian, Z.; Wu, J.; Gao, X. Effects of combined accelerating admixtures on mechanical strength and microstructure of cement mortar. Constr. Build. Mater. 2021, 304, 124642. [Google Scholar] [CrossRef]
- Tan, K.; Gjorv, O.E. Performance of concrete under different curing conditions. Cem. Concr. Res. 1996, 26, 355–361. [Google Scholar] [CrossRef]
- Bagheri-Zadeh, S.H.; Kim, H.; Hounsell, S.; Wood, C.R.; Soleymani, H.; King, M. Field study of concrete maturity methodology in cold weather. J. Constr. Eng. Manage. 2007, 133, 827–835. [Google Scholar] [CrossRef]
- Pushpalal, D.; Danzandorj, S.; Bayarjavkhlan, N.; Nishiwaki, T.; Yamamoto, K. Compressive strength development and durability properties of high-calcium fly ash incorporated concrete in extremely cold weather. Constr. Build. Mater. 2022, 316, 125801. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Wu, Z.; Xiao, J.; Huang, Z.; Fang, Z. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Constr. Build. Mater. 2015, 96, 368–377. [Google Scholar] [CrossRef]
- Huang, H.; Huang, T.; Yuan, Q.; Zhou, D.; Deng, D.; Zhang, L. Temperature dependence of structural build-up and its relation with hydration kinetics of cement paste. Constr. Build. Mater. 2019, 201, 553–562. [Google Scholar] [CrossRef]
- El-Mir, A.; Assaad, J.J.; Nehme, S.G.; El-Hassan, H. Correlating strength and durability to time-temperature profiles of high-performance mass concrete. Case Stud. Constr. Mater. 2022, 16, e01055. [Google Scholar] [CrossRef]
- Alqarni, A.S. A comprehensive review on properties of sustainable concrete using volcanic pumice powder ash as a supplementary cementitious material. Constr. Build. Mater. 2022, 323, 126533. [Google Scholar] [CrossRef]
- Wang, T.; Ishida, T.; Gu, R.; Luan, Y. Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-Si-Al element distribution of fly ash-blended cement paste. Constr. Build. Mater. 2021, 267, 121012. [Google Scholar] [CrossRef]
- Shobeiri, V.; Bennett, B.; Xie, T.; Visintin, P. A comprehensive assessment of the global warming potential of geopolymer concrete. J. Cleaner Prod. 2021, 297, 126669. [Google Scholar] [CrossRef]
- Hooton, R.D. Future directions for design, specification, testing, and construction of durable concrete structures. Cem. Concr. Res. 2019, 124, 105827. [Google Scholar] [CrossRef]
- Asamoto, S.; Kurashige, I.; Chun, P.J. Effect of high temperature at early ages on drying shrinkage and creep of concrete focusing on microcracking damage. Mater. Struct. 2023, 56, 67. [Google Scholar] [CrossRef]
- Alexander, M.; Beushausen, H. Durability, service life prediction, and modelling for reinforced concrete structures–review and critique. Cem. Concr. Res. 2019, 122, 17–29. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, J.; Liao, B.; Ma, S.; Zhong, H.; Lei, J. Investigation on the concrete strength performance of underlying tunnel structure subjected to train-induced dynamic loads at an early age. Constr. Build. Mater. 2022, 337, 127622. [Google Scholar] [CrossRef]
- Lee, T.; Lee, J. Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age. Constr. Build. Mater. 2020, 252, 119027. [Google Scholar] [CrossRef]
- Bui, D.C.; Nakarai, K.; Nishikawa, H. Effects of early-age thermal microcracking on material properties and structural performance of limestone aggregate concrete. Cem. Concr. Res. 2021, 124, 104267. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Y.; Zhang, S.; Xu, F.; Zhu, X.; Jiang, X.; Zhou, L.; Shen, Y.; Chen, Q.; Yan, Z.; et al. Research progress of the thermophysical and mechanical properties of concrete subjected to freeze-thaw cycles. Constr. Build. Mater. 2022, 330, 127254. [Google Scholar] [CrossRef]
- Figueira, R.B.; Sousa, R.; Coelho, L.; Azenha, M.; de Almeida, J.M.; Jorge, P.A.S.; Silva, C.J.R. Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Constr. Build. Mater. 2019, 222, 903–931. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Z.; Dai, L.; Wen, X.; Wang, R.; Zhang, D.; Song, X. Study on Corrosion Mechanism of Different Concentrations of Na2SO4 Solution on Early-Age Cast-In-Situ Concrete. Materials 2021, 14, 2018. [Google Scholar] [CrossRef]
- Chen, Y.; Matalkah, F.; Rankothge, W.; Balachandra, A.; Soroushian, P. Improvement of the surface quality and aesthetics of ultra-high-performance concrete. Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 246–255. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, D.; Hu, S.; Guo, S. Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy 2019, 134, 110949. [Google Scholar] [CrossRef]
- Sharifi, E.; Sadjadi, S.J.; Aliha, M.R.M.; Moniri, A. Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method. Constr. Build. Mater. 2020, 236, 117547. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Nguyen, V.T.; Lura, P.; Dao, V.T. Temperature-stress testing machine–A state-of-the-art design and its unique applications in concrete research. Cem. Concr. Res. 2019, 102, 28–38. [Google Scholar] [CrossRef]
- Choi, H.; Inoue, M.; Choi, H.; Kim, J.; Sudoh, Y.; Kwon, S.; Lee, B.; Yoneyama, A. Physicochemical Study on the Strength Development Characteristics of Cold Weather Concrete Using a Nitrite–Nitrate Based Accelerator. Materials 2019, 12, 2706. [Google Scholar] [CrossRef]
- Nandhini, K.; Karthikeyan, J. The early-age prediction of concrete strength using maturity models: A review. J. Build. Rehabil. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Nepomuceno, M.C.S.; Bernardo, L.F.A. Evaluation of Self-Compacting Concrete Strength with Non-Destructive Tests for Concrete Structures. Appl. Sci. 2019, 9, 5109. [Google Scholar] [CrossRef]
- Kurihashi, Y.; Konno, H.; Hama, Y. Effects of frost-damaged reinforced concrete beams on their impact resistance behavior. Constr. Build. Mater. 2020, 274, 122089. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, F.; Ueda, T. Modeling and simulation on static and fatigue behaviors of intact and frost damaged concrete with ice-strengthening effects. J. Adv. Concr. Technol. 2021, 19, 346–358. [Google Scholar] [CrossRef]
- Mao, J.; Jia, H.; Wu, K.; Wang, Q.; Li, S.; Qian, W.; Xiong, F. A novel method to prevent frost cracking of perforated concrete components in cold regions. Cold Reg. Sci. Technol. 2023, 211, 103848. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, F.; Zhang, D.; Wang, Y.; Ueda, T. RBSM based analysis on mechanical degradation of non-air entrained concrete under frost action–A general prediction with various water cement ratio, lowest temperatures and FTC numbers. Constr. Build. Mater. 2019, 211, 744–755. [Google Scholar] [CrossRef]
- Deng, X.; Gao, X.; Wang, R.; Gao, M.; Yan, X.; Cao, W.; Liu, J. Investigation of microstructural damage in air-entrained recycled concrete under a freeze–thaw environment. Constr. Build. Mater. 2021, 268, 121219. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Fu, K.; Li, Q.; Wang, Y. Experimental studies on the chloride ion permeability of concrete considering the effect of freeze–thaw damage. Constr. Build. Mater. 2020, 236, 117556. [Google Scholar] [CrossRef]
- Yuan, J.; Du, Z.; Wu, Y.; Xiao, F. Freezing-thawing resistance evaluations of concrete pavements with deicing salts based on various surfaces and air void parameters. Constr. Build. Mater. 2019, 204, 317–326. [Google Scholar] [CrossRef]
- Liu, R.; Xiao, H.; Liu, J.; Guo, S.; Pei, Y. Improving the microstructure of ITZ and reducing the permeability of concrete with various water/cement ratios using nano-silica. J. Mater. Sci. 2019, 54, 444–456. [Google Scholar] [CrossRef]
- Zhi, D.; Gong, F.; Wang, Z.; Zhao, Y.; Ueda, T. RBSM-based mesoscale study of frost deterioration for recycled concrete considering air-entrainment in old and new mortar. J. Build. Eng. 2023, 68, 106210. [Google Scholar] [CrossRef]
- Yan, W.; Wu, Z.; Niu, F.; Wan, T.; Zheng, H. Study on the service life prediction of freeze–thaw damaged concrete with high permeability and inorganic crystal waterproof agent additions based on ultrasonic velocity. Constr. Build. Mater. 2020, 259, 120405. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, H.; Li, H.; Yang, Y. Experimental study of deformation of early age concrete suffering from frost damage. Constr. Build. Mater. 2019, 215, 410–421. [Google Scholar] [CrossRef]
- Konzilia, J.; Egger, M.; Feix, J. Experimental investigation on salt frost scaling of textile-reinforced concrete. Struct. Concr. 2022, 23, 954–969. [Google Scholar] [CrossRef]
- Zeiml, M.; Leithner, D.; Lackner, R.; Mang, H.A. How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cem. Concr. Res. 2006, 36, 929–942. [Google Scholar] [CrossRef]
- Rosenqvist, M. Frost-Induced Deterioration of Concrete in Hydraulic Structures: Interactions between Water Absorption, Leaching and Frost Action. Ph.D. Thesis, Lund University, Lund, Sweden, 14 September 2016. Available online: https://lup.lub.lu.se/record/dfac7b31-229a-4d1d-a02e-43258ce060f4 (accessed on 27 April 2023).
- Adachi, Y.; Hirakawa, H.; Fukushima, A.; Uematsu, T.; Kikuta, K.; Taniguchi, M. Investigation of the Deterioration of Medium-Rise-Wall Type Reinforced Concrete Buildings with External Insulation in Snowy Cold Districts. Buildings 2022, 12, 2048. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Li, Y. Deterioration of concrete under the coupling effects of freeze–thaw cycles and other actions: A review. Constr. Build. Mater. 2022, 319, 126045. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, R.; Lai, J.; Ruan, S.; Qian, X.; Yan, D.; Qian, K.; Wang, S. Performance buildup of concrete cured under low-temperatures: Use of a new nanocomposite accelerator and its application. Constr. Build. Mater. 2022, 335, 127529. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, X.; Chen, X.; Ge, Q.; Zhang, Z. Early-age mechanical properties and hydration degrees of magnesium phosphate cement paste in freezing winter of cold regions. Constr. Build. Mater. 2022, 345, 128337. [Google Scholar] [CrossRef]
- Jamolovich, T.U. Modern methods for controlling the strength of concrete in the structures of monolithic buildings. Acad. Globe Indersci. Res. 2022, 3, 588–595. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, L.; Liu, J.; Ma, Y.; Liu, Y.; Xiao, Z.; Shi, C. Accelerators for normal concrete: A critical review on hydration, microstructure and properties of cement-based materials. Cem. Concr. Compos. 2022, 134, 104762. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, T.; Jiang, C.; Chen, Z.; Zhou, K.; Chen, L. The Freeze-Thaw Strength Evolution of Fiber-Reinforced Cement Mortar Based on NMR and Fractal Theory: Considering Porosity and Pore Distribution. Materials 2022, 15, 7316. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Peng, G.; Niu, D.; Zhao, N. Damage study on service performance of early-age frozen concrete. Constr. Build. Mater. 2019, 210, 22–31. [Google Scholar] [CrossRef]
- Regan, E.E.; O’Brien, S.M. Exposing Exposed Concrete—Design, Construction, and Maintenance Considerations for Success. In Proceedings of the Ninth Congress on Forensic Engineering, Denver, CO, USA, 4–7 November 2022; pp. 111–120. [Google Scholar] [CrossRef]
- Guler, S.; Akbulut, Z.F. Effect of freeze-thaw cycles on strength and toughness properties of new generation 3D/4D/5D steel fiber-reinforced concrete. J. Build.Eng. 2022, 51, 104239. [Google Scholar] [CrossRef]
- Xu, Y.; Ye, H.; Yuan, Q.; Shi, C.; Gao, Y.; Fu, Q. The durability of concrete subject to mechanical load coupled with freeze–thaw cycles: A review. Arch. Civ. Mech. Eng. 2022, 22, 47. [Google Scholar] [CrossRef]
- Al-Rashed, R.; Al-Jabari, M. Managing Thermal Effects in Waterproofed Concrete with Multi-Crystallization Enhancer. Cement 2022, 10, 100050. [Google Scholar] [CrossRef]
- Qiu, W.L.; Teng, F.; Pan, S.S. Damage constitutive model of concrete under repeated load after seawater freeze-thaw cycles. Constr. Build. Mater. 2020, 236, 117560. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, Z.G.; Yao, D.; Li, X.; Ji, H. Freeze-thaw resistance of Ultra-High performance concrete: Dependence on concrete composition. Constr. Build. Mater. 2021, 293, 123523. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Al-Tarawneh, M.A.; Ghaffar, S.H.; Chougan, M.; Jweihan, Y.S.; Rahman, M.M. Resistance of hydrophobic concrete with different moisture contents to advanced freeze–thaw cycles. Struct. Concr. 2021, 22, E1050–E1061. [Google Scholar] [CrossRef]
- Santana Rangel, C.; Amario, M.; Pepe, M.; Martinelli, E.; Toledo Filho, R.D. Durability of Structural Recycled Aggregate Concrete Subjected to Freeze-Thaw Cycles. Sustainability 2020, 12, 6475. [Google Scholar] [CrossRef]
- Ma, H.; Yu, H.; Da, B.; Tan, Y. Study on failure mechanism of concrete subjected to freeze-thaw condition in airport deicers. Constr. Build. Mater. 2021, 313, 125202. [Google Scholar] [CrossRef]
- Hanjari, K.Z.; Utgenannt, P.; Lundgren, K. Experimental study of the material and bond properties of frost-damaged concrete. Cem. Concr. Res. 2011, 41, 244–254. [Google Scholar] [CrossRef]
- Song, H.; Yao, J.; Xiang, J. The role of aggregate and cement paste in the deterioration of the transitional interface zone of pervious concrete during freeze-thaw cycles. Case Stud. Constr. Mater. 2022, 16, e01086. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, H.; Deng, Z.; Li, Z. Bond performance of deformed rebar embedded in recycled aggregate concrete subjected to repeated loading after freeze–thaw cycles. Constr. Build. Mater. 2022, 318, 125954. [Google Scholar] [CrossRef]
- Suzuki, T.; Nishimura, S.; Shimamoto, Y.; Shiotani, T.; Ohtsu, M. Damage estimation of concrete canal due to freeze and thawed effects by acoustic emission and X-ray CT methods. Constr. Build. Mater. 2020, 245, 118343. [Google Scholar] [CrossRef]
- Faheem, A.; Hasholt, M.T. The effect of temperature distribution in mortar on frost scaling. Cem. Concr. Res. 2022, 157, 106824. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Gao, J.; Li, Y.; Lou, B.; Maria Barbieri, D.; Ye, T.; Sha, A. Frost-Related Damage of Portland Cement Pastes at Early Age. J. Mater. Civ. Eng. 2023, 35, 04023020. [Google Scholar] [CrossRef]
- Karthick, S.; Kermanshachi, S.; Pamidimukkala, A.; Namian, M. A review of construction workforce health challenges and strategies in extreme weather conditions. Int. J. Occup. Safety Ergo. 2023, 29, 773–784. [Google Scholar] [CrossRef]
- Ballesteros-Pérez, P.; Rojas-Céspedes, Y.A.; Hughes, W.; Kabiri, S.; Pellicer, E.; Mora-Melià, D.; del Campo-Hitschfeld, M.L. Weather-wise: A weather-aware planning tool for improving construction productivity and dealing with claims. Autom. Constr. 2017, 84, 81–95. [Google Scholar] [CrossRef]
- Karthick, S.; Kermanshachi, S.; Ramaji, I. Health and safety of construction field workforce active in extreme weather conditions. In Proceedings of the Construction Research Congress, Arlington, TX, USA, 9–12 March 2022; pp. 737–747. [Google Scholar] [CrossRef]
- Apipattanavis, S.; Sabol, K.; Molenaar, K.R.; Rajagopalan, B.; Xi, Y.; Blackard, B.; Patil, S. Integrated framework for quantifying and predicting weather-related highway construction delays. J. Constr. Eng. Mana. 2010, 136, 1160–1168. [Google Scholar] [CrossRef]
- Raymond, D.L. A Synopsis of Cold Weather Operation Problems of Engine Powered Equipment Experienced in the Northern States and Border Areas of Canada. SAE Tech. Paper 1965, 650935. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Edwards, K.L. Selecting materials for optimum use in engineering components. Mater. Design 2005, 26, 469–473. [Google Scholar] [CrossRef]
- Huang, D.; Chen, Z.; Zhou, S. Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates. Energy 2022, 239, 122095. [Google Scholar] [CrossRef]
- Rahman, M.L.; Malakooti, A.; Ceylan, H.; Kim, S.; Taylor, P.C. A review of electrically conductive concrete heated pavement system technology: From the laboratory to the full-scale implementation. Constr. Build. Mater. 2022, 329, 127139. [Google Scholar] [CrossRef]
- Shin, Y.S.; Kim, G.H. A comparison of the economic feasibility of the protecting tent method and SCSFM method for heat curing of cold-weather concrete. Appl. Mech. Mater. 2014, 651, 1311–1314. [Google Scholar] [CrossRef]
- Harbor, J. Engineering geomorphology at the cutting edge of land disturbance: Erosion and sediment control on construction sites. Geomorphology 1999, 31, 247–263. [Google Scholar] [CrossRef]
- Nan, J.; Liu, J.; Chang, D.; Li, X. Mechanical characteristics and microstructure study of saline soil stabilized by quicklime after curing and freeze-thaw cycle. Cold Reg. Sci. Tech. 2022, 201, 103625. [Google Scholar] [CrossRef]
- Brambilla, A.; Sangiorgio, A. Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk. Renew. Sust. Energy Rev. 2020, 132, 110093. [Google Scholar] [CrossRef]
- Pokhrel, S.; Amiri, L.; Poncet, S.; Sasmito, A.P.; Ghoreishi-Madiseh, S.A. Renewable heating solutions for buildings; a techno-economic comparative study of sewage heat recovery and solar borehole thermal energy storage system. Energy Build. 2022, 259, 111892. [Google Scholar] [CrossRef]
- Tsagarakis, K.P.; Efthymiou, L.; Michopoulos, A.; Mavragani, A.; Anđelković, A.S.; Antolini, F.; Bacic, M.; Bajare, D.; Baralis, M.; Bogusz, W.; et al. A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines. Renew. Energy 2020, 147, 2556–2571. [Google Scholar] [CrossRef]
- Patil, M.; Boraste, S.; Minde, P. A comprehensive review on emerging trends in smart green building technologies and sustainable materials. Mater. Today Proc. 2022, 65, 1813–1822. [Google Scholar] [CrossRef]
- Akeed, M.H.; Qaidi, S.; Ahmed, U.; Faraj, R.H.; Majeed, S.S.; Mohammed, A.S.; Emad, W.; Tayeh, B.A.; Azevedo, A.R. Ultra-high-performance fiber-reinforced concrete. Part V: Mixture design, preparation, mixing, casting, and curing. Case Stud. Constr. Mater. 2022, 17, e01363. [Google Scholar] [CrossRef]
- Ikumi, T.; Salvador, R.P.; Aguado, A. Mix proportioning of sprayed concrete: A systematic literature review. Tunnel. Undergr. Space Tech. 2022, 124, 104456. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Hou, K.P.; Sun, H.F.; Cheng, Y.; Yang, B.J.; Sun, W. Research on the Effect of Curing Temperature, Steel Fiber, and Admixture Content on Concrete Performance Based on Orthogonal Test in Cold Region. Adv. Mater. Sci. Eng. 2022, 2022, 3671823. [Google Scholar] [CrossRef]
- Fu, X.; Zhao, G.; Wang, M.; Wang, J.; Xu, Y.; Gu, C. Comprehensive evaluation method for structural behavior of concrete dams in cold regions. Eng. Struct. 2023, 278, 115435. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, Z. Benchmarking the Sustainability of Concrete and Steel Modular Construction for Buildings in Urban Development. Sus. Cities Soc. 2023, 90, 104400. [Google Scholar] [CrossRef]
- Kia, A.; Wong, H.S.; Cheeseman, C.R. Freeze–thaw durability of conventional and novel permeable pavement replacement. J. Transp. Eng. B Pavem. 2022, 148, 04022051. [Google Scholar] [CrossRef]
- Huang, W.; Wang, H. Multi-aspect engineering properties and sustainability impacts of geopolymer pervious concrete. Compos. B Eng. 2022, 242, 110035. [Google Scholar] [CrossRef]
- Kavitha, R.; Vivekananthan, M.R.; Dhanagopal, K.; Divyabharathi, P.; Prabhakaran, M.; Ramprathap, M. An overview of water proofing system in concrete structures. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Yin, B.; Xu, H.; Fan, F.; Qi, D.; Hua, X.; Xu, T.; Liu, C.; Hou, D. Superhydrophobic coatings based on bionic mineralization for improving the durability of marine concrete. Constr. Build. Mater. 2023, 362, 129705. [Google Scholar] [CrossRef]
- Ayyoob, S.; Zaki, M.; Khan, M.S.; Khan, S.A.; Kamal, M.A. The Efficiency of Waterproofing Agents in Concrete: Assessment of Compressive Strength and Permeability. Amer. J. Civ. Eng. Arch. 2022, 10, 137–146. [Google Scholar] [CrossRef]
- Tang, C.W.; Cheng, C.K.; Ean, L.W. Mix Design and Engineering Properties of Fiber-Reinforced Pervious Concrete Using Lightweight Aggregates. Appl. Sci. 2022, 12, 524. [Google Scholar] [CrossRef]
- Lu, J.X.; Shen, P.; Ali, H.A.; Poon, C.S. Mix design and performance of lightweight ultra high-performance concrete. Mater. Design 2022, 216, 110553. [Google Scholar] [CrossRef]
- Sharbaf, M.; Najimi, M.; Ghafoori, N. A comparative study of natural pozzolan and fly ash: Investigation on abrasion resistance and transport properties of self-consolidating concrete. Constr. Build. Mater. 2022, 346, 128330. [Google Scholar] [CrossRef]
- Ganapathy, G.P.; Keshav, L.; Ravindiran, G.; Razack, N.A. Strength prediction of self-consolidating concrete containing steel fibre with different fibre aspect ratio. J. Nanomater. 2022, 2022, 7604383. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Lyu, K.; Li, T.; Zhao, P.; Liu, R.; Zuo, J.; Fu, F.; Shah, S.P. Enhanced early hydration and mechanical properties of cement-based materials with recycled concrete powder modified by nano-silica. J. Build. Eng. 2022, 50, 104175. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Li, J.; Wang, F.; Hu, S. Effect of w/c ratio and antifreeze admixture on the frost damage of sulfoaluminate cement concrete at −20 °C. Const. Build. Mater. 2022, 347, 128457. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Zhu, P.; Liu, H.; Yan, X.; Wei, D. Mix-Proportion Design Methods and Sustainable Use Evaluation of Recycled Aggregate Concrete Used in Freeze–Thaw Environment. J. Mater. Civ. Eng. 2023, 35, 04022401. [Google Scholar] [CrossRef]
- Mardani, A.; Emin, A. Utilization of high-range water reducing admixture having air-entraining agents in cementitious systems. J. Build. Eng. 2022, 64, 105565. [Google Scholar] [CrossRef]
- Zeng, H.; Lai, Y.; Qu, S.; Yu, F. Exploring the effect of graphene oxide on freeze–thaw durability of air-entrained mortars. Constr. Build. Mater. 2022, 324, 126708. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, T.; Yang, Q. Mechanical Properties and Damage Layer Thickness of Green Concrete under a Low-Temperature Environment. Materials 2022, 15, 7409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, B.; Tian, B.; Lu, X.; Xiong, B. Effect of Fly Ash Content on the Microstructure and Strength of Concrete under Freeze–Thaw Condition. Buildings 2022, 12, 2113. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, S.; Feng, Z.; Chen, B.; Qin, Y.; Xu, W.; Liu, Y. Prediction of the frost resistance of high-performance concrete based on RF-REF: A hybrid prediction approach. Constr. Build. Mater. 2022, 333, 127132. [Google Scholar] [CrossRef]
- Ullah, R.; Qiang, Y.; Ahmad, J.; Vatin, N.I.; El-Shorbagy, M.A. Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review. Materials 2022, 15, 4131. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, D.; Safhi, A.e.M.; Suleiman, A.R.; Soliman, A.M. Fresh, Hardened, and Microstructural Properties of Ambient Cured One-Part Alkali-Activated Self-Consolidating Concrete. Sustainability 2023, 15, 2451. [Google Scholar] [CrossRef]
- Prithiviraj, C.; Saravanan, J.; Ramesh Kumar, D.; Murali, G.; Vatin, N.I.; Swaminathan, P. Assessment of Strength and Durability Properties of Self-Compacting Concrete Comprising Alccofine. Sustainability 2022, 14, 5895. [Google Scholar] [CrossRef]
- Bhuva, P.; Bhogayata, A. A review on the application of artificial intelligence in the mix design optimization and development of self-compacting concrete. Mater. Today Proc. 2022, 65, 603–608. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Gao, Z.; Wang, F. A review on fracture properties of steel fiber reinforced concrete. J. Build. Eng. 2023, 67, 105975. [Google Scholar] [CrossRef]
- Behnia, B.; Askarinejad, P.; LaRussa-Trott, N. Investigating Low-Temperature Cracking Behavior of Fiber-Reinforced Asphalt Concrete Materials. Int. J. Pavement Res. Tech. 2023, 1–12. [Google Scholar] [CrossRef]
- Cao, Y.; Bao, J.; Zhang, P.; Sun, Y.; Cui, Y. A state-of-the-art review on the durability of seawater coral aggregate concrete exposed to marine environment. J. Build. Eng. 2022, 60, 105199. [Google Scholar] [CrossRef]
- Saleh, A.N.; Khalil, O.A.; Attar, A.A. An overview of mechanical and thermal properties of nano concrete. AIP Conf. Proc. 2022, 2398, 020025. [Google Scholar] [CrossRef]
- Eissa, A.; Yasien, A.M.; Bassuoni, M.T.; Alfaro, M. Performance of treated soft clay with nano-modified cementitious binders at reference and cold temperatures. Int. J. Geosynth. Ground Eng. 2022, 8, 52. [Google Scholar] [CrossRef]
- Vijayan, D.S.; Devarajan, P.; Sivasuriyan, A. A review on eminent application and performance of nano based silica and silica fume in the cement concrete. Sust. Energy Tech. Ass. 2023, 56, 103105. [Google Scholar] [CrossRef]
- Hurley, M.; Habibzadeh-Bigdarvish, O.; Lei, G.; Yu, X. Laboratory study of a hydronic concrete deck heated externally in a controlled sub-freezing environment. Energy Built Environ. 2022, in press. [CrossRef]
- Kildashti, K.; Nash, S.; Samali, B. In-plane lateral behaviour of PVC modular concrete form squat walls: Experimental and numerical study. J. Build. Eng. 2022, 52, 104494. [Google Scholar] [CrossRef]
- Mazumder, E.A.; Prasad, M.L.V. Performance Enhancement of Fly Ash-Based Self Compacting Geopolymer Concrete Using Pre-heating Technique. Iran. J. Sci. Tech. Trans. Civ. Eng. 2023, 1–13. [Google Scholar] [CrossRef]
- Eren, F.; Keskinateş, M.; Felekoğlu, B.; Felekoğlu, K.T. The role of Pre-Heating and mineral additive modification on Long-Term strength development of calcium aluminate cement mortars. Constr. Build. Mater. 2022, 340, 127720. [Google Scholar] [CrossRef]
- Zhan, P.M.; He, Z.H. Application of shrinkage reducing admixture in concrete: A review. Constr. Build. Mater. 2019, 201, 676–690. [Google Scholar] [CrossRef]
- Abubakri, S.; Lomboy, G.R.; Kennedy, D.; Watts, B. Development of Electrically Conductive Cold Weather Cement Concrete. J. Cold Reg. Eng. 2023, 37, 04022016. [Google Scholar] [CrossRef]
- Su, Y.; Luo, B.; Luo, Z.; Huang, H.; Li, J.; Wang, D. Effect of Accelerators on the Workability, Strength, and Microstructure of Ultra-High-Performance Concrete. Materials 2022, 15, 159. [Google Scholar] [CrossRef]
- Reddy, P.N.; Naqash, J.A. Development of high early strength in concrete incorporating alccofine and non-chloride accelerator. SN Appl. Sci. 2019, 1, 1–11. [Google Scholar] [CrossRef]
- Hamada, H.; Alattar, A.; Tayeh, B.; Yahaya, F.; Almeshal, I. Influence of different curing methods on the compressive strength of ultra-high-performance concrete: A comprehensive review. Case Stud. Constr. Mater. 2022, 17, e01390. [Google Scholar] [CrossRef]
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Surahyo, A.; Surahyo, A. Hot and cold weather concreting. Concr. Constr. Pract. Prob. Sol. 2019, 257–272. [Google Scholar] [CrossRef]
- Jun, H.; Ke, G. Analysis on Energy Saving Potential of Residential Building Enclosure Based on Orthogonal Experimental Analysis. J. Civ. Eng. Urb. Plan. 2022, 4, 27–33. [Google Scholar]
- Viegas, G.M.; Jodra, J.I.; San Juan, G.A.; Díscoli, C.A. Heat storage wall made of concrete and encapsulated water applied to mass construction social housing in temperate climates. Energy Build. 2018, 159, 346–356. [Google Scholar] [CrossRef]
- Ekrami, N.; Garat, A.; Fung, A.S. Thermal analysis of insulated concrete form (ICF) walls. Energy Proc. 2015, 75, 2150–2156. [Google Scholar] [CrossRef]
- Zuo, Z.; Huang, Y.; Pan, X.; Zhan, Y.; Zhang, L.; Li, X.; Zhu, M.; Zhang, L.; De Corte, W. Experimental research on remote real-time monitoring of concrete strength for highrise building machine during construction. Measurement 2021, 178, 109430. [Google Scholar] [CrossRef]
- Afzal, J.; Yihong, Z.; Afzal, U.; Aslam, M. A complex wireless sensors model (CWSM) for real time monitoring of dam temperature. Heliyon 2023, 9, e13371. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Kang, F. Real-time monitoring of humidity inside concrete structures utilizing embedded smart aggregates. Constr. Build. Mater. 2022, 331, 127317. [Google Scholar] [CrossRef]
- John, S.T.; Roy, B.K.; Sarkar, P.; Davis, R. IoT enabled real-time monitoring system for early-age compressive strength of concrete. J. Constr. Eng. Mana. 2020, 146, 05019020. [Google Scholar] [CrossRef]
- Gamil, Y.; Nilimaa, J.; Najeh, T.; Cwirzen, A. Formwork pressure prediction in cast-in-place self-compacting concrete using deep learning. Auto. Constr. 2023, 151, 104869. [Google Scholar] [CrossRef]
- Gehri, N.; Mata-Falcón, J.; Kaufmann, W. Refined extraction of crack characteristics in Large-scale concrete experiments based on digital image correlation. Eng. Struct. 2022, 251, 113486. [Google Scholar] [CrossRef]
- Kinda, J.; Bourdot, A.; Charpin, L.; Michel-Ponnelle, S.; Benboudjema, F. Investigation of drying shrinkage of cement-based materials assisted by digital image correlation. J. Mater. Civ. Eng. 2022, 34, 04021477. [Google Scholar] [CrossRef]
- Wong, R.W.; Loo, B.P. Sustainability implications of using precast concrete in construction: An in-depth project-level analysis spanning two decades. J. Clean. Prod. 2022, 378, 134486. [Google Scholar] [CrossRef]
- Yang, S. The Development and Application of Prefabricated Buildings. High. Sci. Eng. Tech. 2022, 18, 162–167. [Google Scholar] [CrossRef]
- Bischof, P.; Mata-Falcon, J.; Kaufmann, W. Fostering innovative and sustainable mass-market construction using digital fabrication with concrete. Cem. Concr. Res. 2022, 161, 106948. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, X.; Ma, H.; Hou, D. Advanced Concrete Technology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Onyelowe, K.C.; Ebid, A.M.; Riofrio, A.; Baykara, H.; Soleymani, A.; Mahdi, H.A.; Jahangir, H.; Ibe, K. Multi-Objective Prediction of the Mechanical Properties and Environmental Impact Appraisals of Self-Healing Concrete for Sustainable Structures. Sustainability 2022, 14, 9573. [Google Scholar] [CrossRef]
- Sawadogo, M.; Benmahiddine, F.; Hamami, A.E.A.; Belarbi, R.; Godin, A.; Duquesne, M. Investigation of a novel bio-based phase change material hemp concrete for passive energy storage in buildings. Appl. Therm. Eng. 2022, 212, 118620. [Google Scholar] [CrossRef]
- Monteiro, J.; Roussanaly, S. CCUS scenarios for the cement industry: Is CO2 utilization feasible? J. CO2 Util. 2022, 61, 102015. [Google Scholar] [CrossRef]
- Hossain, M.R.; Sultana, R.; Patwary, M.M.; Khunga, N.; Sharma, P.; Shaker, S.J. Self-healing concrete for sustainable buildings. A review. Environ. Chem. Lett. 2022, 20, 1265–1273. [Google Scholar] [CrossRef]
- Amran, M.; Onaizi, A.M.; Fediuk, R.; Vatin, N.I.; Muhammad Rashid, R.S.; Abdelgader, H.; Ozbakkaloglu, T. Self-Healing Concrete as a Prospective Construction Material: A Review. Materials 2022, 15, 3214. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Rahim, M.; El Ganaoui, M.; Bennacer, R.; Liu, B. Multilayer assembly of phase change material and bio-based concrete: A passive envelope to improve the energy and hygrothermal performance of buildings. Energy Conv. Mana. 2022, 257, 115454. [Google Scholar] [CrossRef]
- Hargis, C.W.; Chen, I.A.; Devenney, M.; Fernandez, M.J.; Gilliam, R.J.; Thatcher, R.P. Calcium Carbonate Cement: A Carbon Capture, Utilization, and Storage (CCUS) Technique. Materials 2021, 14, 2709. [Google Scholar] [CrossRef]
- Kong, Y.K.; Ruan, S.; Kurumisawa, K. Recycling of calcined carbonated cement pastes as cementitious materials: Proposed CCUS technology for calcium looping. J. Environ. Chem. Eng. 2022, 10, 108247. [Google Scholar] [CrossRef]
- Guimarães, A.S.; Delgado, J.M.P.Q.; Lucas, S.S. Advanced Manufacturing in Civil Engineering. Energies 2021, 14, 4474. [Google Scholar] [CrossRef]
- Classen, M.; Ungermann, J.; Sharma, R. Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement. Appl. Sci. 2020, 10, 3791. [Google Scholar] [CrossRef]
- Xiao, H.; Muthu, B.; Kadry, S.N. Artificial intelligence with robotics for advanced manufacturing industry using robot-assisted mixed-integer programming model. Intell. Serv. Robot. 2020, 1–10. [Google Scholar] [CrossRef]
- Gunawardena, T.; Mendis, P. Prefabricated Building Systems—Design and Construction. Encyclopedia 2022, 2, 70–95. [Google Scholar] [CrossRef]
- El Inaty, F.; Baz, B.; Aouad, G. Long-term durability assessment of 3D printed concrete. J. Adh. Sci. Tech. 2022, 1–16. [Google Scholar] [CrossRef]
- Bazli, M.; Ashrafi, H.; Rajabipour, A.; Kutay, C. 3D printing for remote housing: Benefits and challenges. Aut. Constr. 2023, 148, 104772. [Google Scholar] [CrossRef]
- Dörfler, K.; Dielemans, G.; Lachmayer, L.; Recker, T.; Raatz, A.; Lowke, D.; Gerke, M. Additive Manufacturing using mobile robots: Opportunities and challenges for building construction. Cem. Concr. Res. 2022, 158, 106772. [Google Scholar] [CrossRef]
- Meisel, N.A.; Watson, N.; Bilén, S.G.; Duarte, J.P.; Nazarian, S. Design and system considerations for construction-scale concrete additive manufacturing in remote environments via robotic arm deposition. 3D Print. Add. Manuf. 2022, 9, 35–45. [Google Scholar] [CrossRef]
- Momeni, M.; Relefors, J.; Khatry, A.; Pettersson, L.; Papadopoulos, A.V.; Nolte, T. Automated fabrication of reinforcement cages using a robotized production cell. Aut. Constr. 2022, 133, 103990. [Google Scholar] [CrossRef]
- Ou, Y.; Bao, D.W.; Zhu, G.Q.; Luo, D. Additive Fabrication of Large-Scale Customizable Formwork Using Robotic Fiber-Reinforced Polymer Winding. 3D Print. Add. Manuf. 2022, 9, 109–121. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X.; Piroozfar, P. An overall review of research on prefabricated construction supply chain management. Engineering. Constr. Arch. Mana. 2022; in press. [Google Scholar] [CrossRef]
- Aurier, L.; Hassan, M.; Jaworski, J.; Guizani, L. Review of Accelerated Bridge Construction Systems for Bridge Superstructures and Their Adaptability for Cold Weather. CivilEng 2023, 4, 83–104. [Google Scholar] [CrossRef]
- Zhao, X.; Cao, L. Application Strategy of BIM Technology in Virtual Construction of Prefabricated Buildings. J. Arch. Res. Dev. 2022, 6, 40–46. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.; Zhang, Z.; Rosen, D.W. Machine learning integrated design for additive manufacturing. J. Intel. Manuf. 2022, 33, 1073–1086. [Google Scholar] [CrossRef]
- Anane, W.; Iordanova, I.; Ouellet-Plamondon, C. BIM-driven computational design for robotic manufacturing in off-site construction: An integrated Design-to-Manufacturing (DtM) approach. Auto. Constr. 2023, 150, 104782. [Google Scholar] [CrossRef]
- Ng, M.S.; Graser, K.; Hall, D.M. Digital fabrication, BIM and early contractor involvement in design in construction projects: A comparative case study. Arch. Eng. Design Mana. 2023, 19, 39–55. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Wang, L.; Chen, Z.S.; Qin, Y. Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model. Constr. Build. Mater. 2022, 356, 129232. [Google Scholar] [CrossRef]
- Sherif, M.; Nassar, K.; Hosny, O.; Safar, S.; Abotaleb, I. Automated BIM-based structural design and cost optimization model for reinforced concrete buildings. Sci. Rep. 2022, 12, 21616. [Google Scholar] [CrossRef]
- Mousavi, M.; TohidiFar, A.; Alvanchi, A. BIM and machine learning in seismic damage prediction for non-structural exterior infill walls. Auto. Constr. 2022, 139, 104288. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Auto. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Sadrossadat, E.; Basarir, H.; Karrech, A.; Elchalakani, M. Multi-objective mixture design and optimisation of steel fiber reinforced UHPC using machine learning algorithms and metaheuristics. Eng. Comput. 2022, 38, 2569–2582. [Google Scholar] [CrossRef]
- Moein, M.M.; Saradar, A.; Rahmati, K.; Mousavinejad, S.H.G.; Bristow, J.; Aramali, V.; Karakouzian, M. Predictive models for concrete properties using machine learning and deep learning approaches: A review. J. Build. Eng. 2022, 63, 105444. [Google Scholar] [CrossRef]
- Zabin, A.; González, V.A.; Zou, Y.; Amor, R. Applications of machine learning to BIM: A systematic literature review. Adv. Eng. Inf. 2022, 51, 101474. [Google Scholar] [CrossRef]
- Opoku, D.G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M.; Famakinwa, T.; Bamdad, K. Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings 2022, 12, 113. [Google Scholar] [CrossRef]
- Madubuike, O.C.; Anumba, C.J.; Khallaf, R. A review of digital twin applications in construction. J. Inf. Tech. Constr. 2022, 27, 145–172. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Kraniotis, D.; Svennevig, P.R.; Svidt, K. Digital Twin framework for automated fault source detection and prediction for comfort performance evaluation of existing non-residential Norwegian buildings. Energy Build. 2023, 281, 112732. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.; Zhang, Y.; Bilan, S. Green infrastructure: Systematic literature review. Econ. Res. 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Coffetti, D.; Crotti, E.; Gazzaniga, G.; Carrara, M.; Pastore, T.; Coppola, L. Pathways towards sustainable concrete. Cem. Concr. Res. 2022, 154, 106718. [Google Scholar] [CrossRef]
- Das, S.; Saha, P.; Jena, S.P.; Panda, P. Geopolymer concrete: Sustainable green concrete for reduced greenhouse gas emission—A review. Mater. Today Proc. 2022, 60, 62–71. [Google Scholar] [CrossRef]
- Coffetti, D.; Cabrini, M.; Crotti, E.; Gazzaniga, G.; Lorenzi, S.; Pastore, T.; Coppola, L. Durability of Mortars Manufactured with Low-Carbon Binders Exposed to Calcium Chloride-Based De-Icing Salts. Key Eng. Mater. 2022, 919, 151–160. [Google Scholar] [CrossRef]
- Alhassan, M.; Alkhawaldeh, A.; Betoush, N.; Alkhawaldeh, M.; Huseien, G.F.; Amaireh, L.; Elrefae, A. Life Cycle Assessment of the Sustainability of Alkali-Activated Binders. Biomimetics 2023, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, M.; Seth, D.; Balaji, K.V.G.D.; Bharath, A. Engineering properties and environmental impact assessment of green concrete prepared with PVC waste powder: A step towards sustainable approach. Case Stud. Constr. Mater. 2022, 17, e01404. [Google Scholar] [CrossRef]
- Forero, J.A.; Bravo, M.; Pacheco, J.; de Brito, J.; Evangelista, L. Thermal Performance of Concrete with Reactive Magnesium Oxide as an Alternative Binder. Sustainability 2022, 14, 5885. [Google Scholar] [CrossRef]
- Roy, S.; Roy, S. Carbon Dioxide Capture—A Challenge for Green Economy. Amer. J. Appl. Bio-Tech. Res. 2022, 3, 30–49. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; Zhu, T. A review of low-carbon technologies and projects for the global cement industry. J. Environ. Sci. 2023, 136, 682–697. [Google Scholar] [CrossRef]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme weather impacts of climate change: An attribution perspective. Environ. Res. Clima. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Zaqout, T.; Andradóttir, H.Ó.; Arnalds, Ó. Infiltration capacity in urban areas undergoing frequent snow and freeze–thaw cycles: Implications on sustainable urban drainage systems. J. Hydr. 2022, 607, 127495. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Kang, F.; Zhang, J. Monitoring and evaluation of the repair quality of concrete cracks using piezoelectric smart aggregates. Constr. Build. Mater. 2022, 317, 125775. [Google Scholar] [CrossRef]
- Katman, H.Y.B.; Khai, W.J.; Bheel, N.; Kırgız, M.S.; Kumar, A.; Benjeddou, O. Fabrication and Characterization of Cement-Based Hybrid Concrete Containing Coir Fiber for Advancing Concrete Construction. Buildings 2022, 12, 1450. [Google Scholar] [CrossRef]
- Azam, R.; Riaz, M.R.; Farooq, M.U.; Ali, F.; Mohsan, M.; Deifalla, A.F.; Mohamed, A.M. Optimization-Based Economical Flexural Design of Singly Reinforced Concrete Beams: A Parametric Study. Materials 2022, 15, 3223. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.F.; Rehman, Z.U.; Kuruc, M.; Medveď, I.; Bačinskas, D.; Čurpek, J.; Čekon, M.; Ijaz, N.; Ansari, W.S. Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Constr. Build. Mater. 2022, 319, 126061. [Google Scholar] [CrossRef]
Physical Health Challenge | Cause | Symptoms |
---|---|---|
Numbness in exposed body parts | Exposed extremities in cold | Increased nerve pain |
Increase in number of injuries | Continuous exertion in cold weather | Tiredness |
Hobbling effect and uneasiness | Tight thermal clothing | Reduced ability to move |
Physical fatigue | Performing for longer duration in cold weather | Tiredness |
Hypothermia | Excessive loss of heat | Weak pulse, lack of consciousness |
Vasoconstriction of blood vessels | Prolonged exposure to cold | Increase in blood pressure |
Frostbite | Freezing of tissues | Long-term numbness in affected region |
Necrosis | Lack of blood supply to tissue | Malfunctioning of cells |
Upper and lower respiratory issues | Inhaling cold, dry air | Shortness of breath |
Musculoskeletal disorders such as wrist, neck, back and overall body pain and inflammation | Increased muscular load | Carpal tunnel syndrome |
Increase in number of accidents caused by slips and falls | Icy and slippery surfaces in workplace | Major and minor injuries in body parts |
Trench foot | Performing activities in cold water | Blisters, blotchy skin |
Increase in onset of fatigue due to personal protective clothing | Increase in metabolic energy | Tiredness, weakness in muscles |
Reduced dexterity | Impaired response from hand receptors | Inability to handle tools and equipment |
Type of Control | Strategies for Cold Weather Conditions |
---|---|
Engineering control | Encourage the use of smart clothing inserted with infrared, humidity, and temperature sensors |
Wear a Peltier-embedded cooling jacket | |
Heat exchange masks | |
Protective coverings and insulation | |
Anti-slip shoes | |
Provide workers with infrared heaters | |
Provide warming facilities/local shelters with heating mechanisms | |
Administrative control | Cold protection plan and cold management |
Place warning signs on slippery surfaces | |
Personal protective equipment (PPE) control | Ensure personal protective clothing (PPC) fits properly |
Drainage and Waterproofing | |
---|---|
Drainage | Ensuring proper drainage around the concrete structure can help prevent the accumulation of water and reduce the risk of freeze–thaw cycles [151]. Effective drainage systems, such as well-designed slopes, drains, and gutters, can help minimize water ingress and mitigate the risk of frost damage and early freezing [152]. |
Waterproofing and protective coatings | Applying waterproofing membranes [153] or protective coatings [154] to the concrete surface can help prevent water absorption and reduce the risk of frost damage, early freezing, and freeze–thaw cycles. These treatments can improve the concrete’s resistance to moisture ingress [155] and thereby enhance its overall durability. |
Adjusting the Mix Design | |
---|---|
Water–cement ratio | Controlling the water–cement ratio is crucial to producing a dense and durable concrete mix with low permeability, reducing the risk of frost damage and freeze–thaw cycles [161]. A lower water–cement ratio reduces the porosity of the concrete, making it more resistant to water ingress and freezing [162]. |
Air entrainment | Incorporating air-entraining admixtures into the concrete mix creates small, evenly distributed air voids within the concrete [163]. These air voids provide space for the expansion of freezing water, reducing internal pressure and preventing frost damage, early freezing, and freeze–thaw deterioration [164]. |
Supplementary Cementitious Materials (SCMs) | The use of SCMs, such as fly ash, slag, or silica fume, can improve the concrete’s resistance to freezing and thawing cycles by increasing the water–binder ratio [165]. SCMs can thereby reduce the permeability of concrete and enhance its durability, making it less susceptible to frost damage and early freezing [166]. |
Cold Weather Concreting Practices | |
---|---|
Preheated ingredients | Preheating the concrete ingredients, such as aggregates and water, can help maintain the concrete’s temperature during placement and reduce the risk of early freezing [180]. This practice ensures the proper setting and curing of the concrete in cold weather conditions [181]. The preheating technique can be useful in extreme cold conditions or when using mass concrete. |
Accelerating admixtures | Chemical additives and accelerating admixtures can help improve the performance of concrete in cold weather by reducing setting time and shrinkage [182], promoting faster strength development, and enhancing the durability [183,184]. Non-chloride accelerators, such as calcium nitrate or calcium formate, can help speed up the setting and strength development of concrete in cold weather without the risk of corrosion associated with chloride-based accelerators [185]. |
Temperature monitoring and control | Monitoring and controlling the concrete temperature during placement and curing is critical in preventing early freezing and frost damage. Maintaining the concrete temperature within certain limits, typically between 5 and 35 °C, is recommended for proper curing and strength development [186]. Advanced temperature monitoring systems, such as wireless sensors or thermocouples, can provide real-time information on concrete temperature during placement and curing, helping the concrete to maintain the necessary temperature for optimal curing and strength development [187]. |
Protection and Insulation | |
---|---|
Insulating blankets or covers | Providing adequate insulation for the concrete during setting and curing can help maintain the necessary temperature and moisture levels for optimal curing [189]. Insulating blankets or covers can protect the concrete from freezing temperatures, preventing early freezing and thereby preventing frost damage [188]. |
Heated enclosures | In very low, freezing temperatures, enclosures can be used to provide a controlled environment for concrete placement and curing [190]. The enclosures are typically equipped with heating systems, such as propane or electric heaters [191]. These enclosures can thereby maintain the temperature and humidity required for proper curing, minimizing the risk of frost-related problems. |
Insulated concrete forms | Insulated formwork systems, such as insulated concrete forms (ICFs) or insulated sandwich panels, can provide a protective thermal barrier for concrete during placement and curing [192]. These systems can help maintain the necessary temperature for proper curing and strength development while also improving the energy efficiency of the finished structure. |
Smart Concrete Materials and Production Technologies | |
---|---|
Self-healing concrete | Self-healing concrete is an innovative type of building material that can autonomously repair cracks and damage, thereby improving the durability and longevity of concrete structures [207]. This technology typically relies on the use of bacteria or microcapsules containing healing agents, which are activated when cracks form, releasing the healing agent and promoting the formation of new concrete material [208]. |
Phase change materials | Phase change materials (PCMs) involve the incorporation of phase transitioning materials into concrete mixes, which can help improve the thermal performance of concrete structures in cold weather [209]. PCMs can store and release thermal energy as they undergo phase transitions, effectively acting as thermal batteries that help regulate the temperature of concrete structures and reduce the risk of frost damage or freeze–thaw deterioration [64]. |
Carbon capture, utilization, and storage technologies | Carbon capture, utilization, and storage (CCUS) technologies offer the potential to reduce the environmental impact of concrete production and use by capturing carbon dioxide emissions and incorporating them into concrete materials [210]. These technologies can help create more sustainable concrete materials and construction practices [211]. |
Advanced Manufacturing and Construction Technologies for Concrete | |
---|---|
3D printing | 3D printing technology offers the potential to revolutionize the production of concrete elements and structures [216]. By enabling precise and automated fabrication of complex or custom-designed components, 3D printing provides opportunities to reduce labor costs, minimize material waste, and improve the overall quality and performance of concrete structures [217]. |
Robotic construction | The use of robotic systems in the construction industry can help improve efficiency, reduce labor costs, and enhance quality and performance [218]. Robotic systems can be used for a range of construction tasks, such as concrete placement [219], reinforcement installation [220], and formwork assembly [221], helping to streamline construction processes and ensure consistent quality and performance. |
Modular and prefabricated construction | Modular and prefabricated construction techniques involve the off-site production and assembly of concrete components [222]. These production techniques can help improve the efficiency and performance of concrete construction in low temperature environments [223]. By applying modular or prefabrication technologies, the construction industry can reduce on-site labor requirements, minimize weather-related delays, and ensure consistent quality and performance [224]. |
Integrated Design and Optimization Technologies | |
---|---|
Building information modeling | Building information modeling (BIM) is a digital representation of the physical and functional characteristics of a building or infrastructure, enabling the integration of design, construction, and management processes [229]. BIM can help improve the efficiency, performance, and sustainability of concrete construction in cold weather by facilitating better coordination and communication among project stakeholders [227], optimizing material selection and construction techniques [229], and predicting potential issues related to frost damage, freeze–thaw cycles, or other cold weather-related challenges [230]. |
Artificial intelligence and machine learning | Artificial intelligence (AI) and machine learning technologies offer significant potential for improving the efficiency, performance, and durability of concrete construction and structures [231]. These technologies can help to optimize concrete mix designs [232], predict the performance of concrete materials and structures under various environmental conditions [233], and develop more efficient construction processes and techniques [234]. |
Digital twins | The digital twin technology involves the creation of a virtual replica of a physical asset or system [235], allowing for real-time monitoring, analysis, and optimization of its performance [236]. Digital twins can be used to model and predict the behavior of concrete structures in cold weather environments, enabling the use and development of more resilient and efficient construction techniques and materials [237]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilimaa, J.; Zhaka, V. An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather. Eng 2023, 4, 1550-1580. https://doi.org/10.3390/eng4020089
Nilimaa J, Zhaka V. An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather. Eng. 2023; 4(2):1550-1580. https://doi.org/10.3390/eng4020089
Chicago/Turabian StyleNilimaa, Jonny, and Vasiola Zhaka. 2023. "An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather" Eng 4, no. 2: 1550-1580. https://doi.org/10.3390/eng4020089
APA StyleNilimaa, J., & Zhaka, V. (2023). An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather. Eng, 4(2), 1550-1580. https://doi.org/10.3390/eng4020089