A Computationally Time-Efficient Method for Implementing Pressure Load to FE Models with Lagrangian Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conventional Method to Compute the Equivalent Nodal Force from Pressure Load
2.2. Lagrangian Element with Legendre-Gauss-Lobatto Nodes and Integration Quadrature
2.3. Development of a Computationally Time-Efficient Algorithm to Compute Equivalent Nodal Force from Pressure Load
2.4. Application: Model Details
3. Results and Discussion
3.1. Computational Efficiency and Convergence Test
3.2. Application to Space Habitat Models
3.3. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Mass matrix for an element | |
Damping matrix for an element | |
Stiffness matrix for an element | |
Acceleration vector for an element | |
Velocity vector for an element | |
Displacement vector for an element | |
Equivalent nodal force due to external forces on element | |
Body force vector of an element | |
Tractor force vector of an element | |
Traction vector of the assembled model | |
Body force vector of the assembled model | |
Mass matrix for the assembled model | |
Stiffness matrix for the assembled model | |
Damping matrix for the assembled model | |
Acceleration vector for the assembled model | |
Velocity vector for the assembled model | |
Equivalent stiffness matrix for the assembled model | |
Displacement vector for the assembled model | |
Normal surface traction vector | |
Shape function corresponds to node of an element | |
Jacobian matrix | |
Traction magnitude on an integration point | |
Weight of an integration point | |
vector of shape functions | |
Number of nodes | |
Number of nodes along axis | |
Number of nodes along axis | |
Number of nodes along axis | |
Pressure at node | |
Number of nodes of an element | |
Number of integration points of an element | |
Number of elements of the assembled model | |
Number of nodes of the assembled model | |
Abbreviations | |
FE | Finite element |
FEM | Finite element method |
LGL | Legendre–Gauss–Lobatto |
NB | Newmark-Beta |
EOM | Equation of motion |
SoS | System of systems |
References
- Sadd, M.H. Elasticity: Theory, Applications, and Numerics. Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Reismann, H. On the forced motion of elastic solids. Appl. Sci. Res. 1968, 18, 156–165. [Google Scholar] [CrossRef]
- Zienkiewicz, O.; Taylor, R.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals: Seventh Edition; Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Bathe, K.-J. Finite Element Procedures; Prentice Hall Education: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Papadopoulos, P.; Solberg, J.M. A Lagrange multiplier method for the finite element solution of frictionless contact problems. Math. Comput. Model. 1998, 28, 373–384. [Google Scholar] [CrossRef]
- Perić, D.; Owen, D.R.J. Computational model for 3-D contact problems with friction based on the penalty method. Int. J. Numer. Methods Eng. 1992, 35, 1289–1309. [Google Scholar] [CrossRef]
- Fagcang, H.; Stobart, R.; Steffen, T. A review of component-in-the-loop: Cyber-physical experiments for rapid system development and integration. Adv. Mech. Eng. 2022, 14, 16878132221109969. [Google Scholar] [CrossRef]
- Delp, C.; Cooney, L.; Dutenhoffer, C.; Gostelow, R.; Jackson, M.; Wilkerson, M.; Kahn, T.; Piggott, S. The Challenge of Model-based Systems Engineering for Space Systems, Year 2. Insight 2009, 12, 36–39. [Google Scholar] [CrossRef]
- Szarazi, J.; Reichwein, A.; Bock, C. Integrating Finite Element Analysis with Systems Engineering Models. In Proceedings of the NAFEMS World Congress, Stockholm, Sweden, 11 June 2017. [Google Scholar]
- Dyke, S.J.; Marais, K.; Bilionis, I.; Werfel, J.; Malla, R. Strategies for the design and operation of resilient extraterrestrial habitats. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Online, 22–26 March 2021; p. 1159105. [Google Scholar] [CrossRef]
- Shahriar, A.; Montoya, H.; Majlesi, A.; Avila, D.; Montoya, A. Coupling Independent Solid Mechanics-Based Systems in a System-of-Systems Modeling Framework. AIAA J. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Maghareh, A.; Lenjani, A.; Krishnan, M.; Dyke, S.; Bilionis, I. Role of cyber-physical testing in developing resilient extraterrestrial habitats. Earth Space 2021, 1059–1068. [Google Scholar]
- Teukolsky, S.A. Short note on the mass matrix for Gauss–Lobatto grid points. J. Comput. Phys. 2015, 283, 408–413. [Google Scholar] [CrossRef]
- Palacz, M.; Krawczuk, M.; Żak, A. Spectral Element Methods for Damage Detection and Condition Monitoring. In Smart Innovation, Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 549–558. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Zak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Patera, A.T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 1984, 54, 468–488. [Google Scholar] [CrossRef]
- Komatitsch, D.; Tromp, J. Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 2002, 149, 390–412. [Google Scholar] [CrossRef]
- Gautschi, W. High-order Gauss–Lobatto formulae. Numer. Algorithms 2000, 25, 213–222. [Google Scholar] [CrossRef]
- Swarztrauber, P.N. On computing the points and weights for Gauss--Legendre quadrature. SIAM J. Sci. Comput. 2003, 24, 945–954. [Google Scholar] [CrossRef]
- Million, E. The hadamard product. Course Notes 2007, 3, 1–7. [Google Scholar]
- Smith, M. ABAQUS/Standard User’s Manual, Version 6.9; Dassault Systèmes Simulia Corp.: Johnston, RI, USA, 2009. [Google Scholar]
- Maździarz, M. Unified isoparametric 3D lagrangeFinite elements. CMES Comput. Model. Eng. Sci. 2010, 66, 1–24. [Google Scholar]
- Soman, R.; Kudela, P.; Balasubramaniam, K.; Singh, S.K.; Malinowski, P. A study of sensor placement optimization problem for guided wave-based damage detection. Sensors 2019, 19, 1856. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, P.-F.; Li, D.M.; Xie, J.-X. Modeling nonlinear deformation of slender auxetic structures under follower loads with complex variable meshfree methods. Mech. Adv. Mater. Struct. 2024, 31, 4969–4983. [Google Scholar] [CrossRef]
Operation | Operation Description | No of Arithmetic Operations | |||
---|---|---|---|---|---|
Extract
from of Equation (6) | 1: Elementwise addition | ||||
, Equation (6) | 2: Matrix vector multiplication | ||||
, Equation (4) | 3.1: Matrix–matrix multiplication | ||||
3.2: Scalar–scalar multiplication | |||||
3.3: Scalar–vector multiplication | |||||
3.4: | |||||
Assembly of the force vector for one surface | 4.1: times | ||||
4.2: Elementwise addition | |||||
Total for the whole model | 5: times |
Operation | Operation Description | No of Arithmetic Operations for Precomputation | No of Arithmetic Operation Runtimes | |||
---|---|---|---|---|---|---|
, Equation (25) | 1.1: Matrix–matrix multiplication | |||||
1.2: Scalar–vector multiplication | ||||||
1.3: | ||||||
times | ||||||
1.5: Elementwise addition | ||||||
times | ||||||
, Equation (24) | 2: Elementwise addition | |||||
Equation (23) | 3: Hammard multiplication | |||||
Total for the whole model |
Material Properties | Value |
---|---|
Modulus of elasticity | 68 GPa |
Poission’s ratio | 0.3 |
Density | 2703 |
Damping |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahriar, A.; Majlesi, A.; Montoya, A. A Computationally Time-Efficient Method for Implementing Pressure Load to FE Models with Lagrangian Elements. Eng 2024, 5, 2379-2394. https://doi.org/10.3390/eng5030124
Shahriar A, Majlesi A, Montoya A. A Computationally Time-Efficient Method for Implementing Pressure Load to FE Models with Lagrangian Elements. Eng. 2024; 5(3):2379-2394. https://doi.org/10.3390/eng5030124
Chicago/Turabian StyleShahriar, Adnan, Arsalan Majlesi, and Arturo Montoya. 2024. "A Computationally Time-Efficient Method for Implementing Pressure Load to FE Models with Lagrangian Elements" Eng 5, no. 3: 2379-2394. https://doi.org/10.3390/eng5030124
APA StyleShahriar, A., Majlesi, A., & Montoya, A. (2024). A Computationally Time-Efficient Method for Implementing Pressure Load to FE Models with Lagrangian Elements. Eng, 5(3), 2379-2394. https://doi.org/10.3390/eng5030124