Enhancing Hydrogen Recovery from Saline Aquifers: Quantifying Wettability and Hysteresis Influence and Minimizing Losses with a Cushion Gas
Abstract
:1. Introduction
2. Geological Modeling
3. Rock-Fluid Modeling for Wettability and Hysteresis Assessment
3.1. Relative Permeability Curves at Different Wettability Conditions
3.2. Gas Relative Permeability Hysteresis
3.3. Water Relative Permeability Hysteresis
- , nonwetting phase saturation;
- , residual or trapped water saturation;
- , normalized water-phase saturation;
- , maximum historical water saturation;
- , maximum possible water saturation;
- , maximum possible residual or trapped nonwetting saturation;
- , imbibition water-phase relative permeability;
- , drainage water-phase relative permeability;
- , experimental or analytical curve for imbibition water-phase relative permeability, which falls between the maximum possible water saturation and the maximum possible trapped water saturation.
4. Rock-Fluid Modeling for Cushion Gas Assessment
5. Results of Wettability and Relative Permeability Hysteresis Assessment
5.1. Impact of Wettability on Underground Hydrogen Storage
5.2. Impact of Gas and Water Hysteresis on Underground Hydrogen Storage
5.2.1. The Impact of Gas Relative Permeability Hysteresis
5.2.2. The Impact of Water Relative Permeability Hysteresis
6. Results of Cushion Gas Assessment
6.1. Impact of Relative Permeability Interpolation
6.2. Impact of Cushion Gas Type
7. Conclusions
- Our investigation into underground hydrogen storage revealed that the variation in wettability has a limited impact on the efficiency of the storage system. The water-wet condition resulted in a recovery factor that is 8% greater than that achieved under the neutrally wet condition.
- Furthermore, the results indicated that the hysteresis effect exerted the most substantial influence on the recovery of hydrogen. Our results suggested that accounting for the gas hysteresis effect resulted in a substantial drop in recovery from 78% to 45% by the fourth cycle. The inclusion of water relative permeability hysteresis, however, resulted in a notable reduction in both hydrogen recovery and water production for each cycle, which suggests that accounting for water hysteresis in UHS simulation studies is important to have a precise estimation of the recovery factor and to predict the operational statue accurately.
- Our analysis indicates the necessity for further experimental studies measuring the relative permeability of the H2/brine system during drainage and imbibition processes. It is imperative to acknowledge that the residual gas saturation data reported from the laboratory experiments usually exhibit a substantial margin of error and that consequently influences the accuracy of the utilized data. Additional experimental investigations will enhance our comprehensive knowledge of hydrogen behavior and maximize the precision of the simulation results to assess the viability of the storage projects. Furthermore, no published data related to hysteresis in a weak water-wet/neutrally wet formation was available. However, based on our results, a marginal increase in the trapped gas saturation is anticipated, with no significant impact on hydrogen recovery.
- Based on our research outcomes, CH4 emerges as the optimal choice, followed by N2, and subsequently CO2. The results indicated that the relative permeabilities for different gases and their mixture have a significant impact on both H2 recovery and water production, therefore we emphasize the importance of considering the associated relative permeability curves for all the injected gases in case of utilizing a different cushion gas than H2.
- Furthermore, the utilization of CH4 as a cushion gas not only enhances H2 recovery but also mitigates H2 plume spreading, thereby creating an optimal condition for UHS. Lastly, we found that increasing the cushion gas volume, beyond the required amount to maintain the aquifer pressure, improves the recovery in the first cycle but its impact tapers off over a longer duration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground Hydrogen Storage: Characteristics and Prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Najjar, Y.S.H. Hydrogen Safety: The Road toward Green Technology. Int. J. Hydrogen Energy 2013, 38, 10716–10728. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Impact of Reservoir Wettability and Heterogeneity on CO2-Plume Migration and Trapping Capacity. Int. J. Greenh. Gas Control 2017, 58, 142–158. [Google Scholar] [CrossRef]
- Akbarabadi, M.; Piri, M. Relative Permeability Hysteresis and Capillary Trapping Characteristics of Supercritical CO2/Brine Systems: An Experimental Study at Reservoir Conditions. Adv. Water Resour. 2013, 52, 190–206. [Google Scholar] [CrossRef]
- Ruprecht, C.; Pini, R.; Falta, R.; Benson, S.; Murdoch, L. Hysteretic Trapping and Relative Permeability of CO2 in Sandstone at Reservoir Conditions. Int. J. Greenh. Gas Control 2014, 27, 15–27. [Google Scholar] [CrossRef]
- Anderson, W.G. Wettability Literature Survey- Part 4: Effects of Wettability on Capillary Pressure. J. Pet. Technol. 1987, 39, 1283–1300. [Google Scholar] [CrossRef]
- Iglauer, S.; Ali, M.; Keshavarz, A. Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage. Geophys. Res. Lett. 2021, 48, e2020GL090814. [Google Scholar] [CrossRef]
- Hashemi, L.; Boon, M.; Glerum, W.; Farajzadeh, R.; Hajibeygi, H. A Comparative Study for H2–CH4 Mixture Wettability in Sandstone Porous Rocks Relevant to Underground Hydrogen Storage. Adv. Water Resour. 2022, 163, 104165. [Google Scholar] [CrossRef]
- Higgs, S.; Wang, Y.D.; Sun, C.; Ennis-King, J.; Jackson, S.; Armstrong, R.; Mostaghimi, P. In-Situ Hydrogen Wettability Characterisation for Underground Hydrogen Storage. Int. J. Hydrogen Energy 2022, 47, 13062–13075. [Google Scholar] [CrossRef]
- Aftab, A.; Al-Yaseri, A.; Nzila, A.; Al Hamad, J.; Amao, A.O.; Sarmadivaleh, M. Quartz–H2–Brine Bacterium Wettability under Realistic Geo-Conditions: Towards Geological Hydrogen Storage. Energy Fuels 2023, 37, 5623–5631. [Google Scholar] [CrossRef]
- Ali, M.; Arif, M.; Sedev, R.; Sánchez-Román, M.; Keshavarz, A.; Iglauer, S. Underground Hydrogen Storage: The Microbiotic Influence on Rock Wettability. J. Energy Storage 2023, 72, 108405. [Google Scholar] [CrossRef]
- Fevre, C.L. Gas Storage in Great Britain; Oxford Institute for Energy Studies: Oxford, UK, 2013. [Google Scholar]
- Heinemann, N.; Wilkinson, M.; Adie, K.; Edlmann, K.; Thaysen, E.M.; Hassanpouryouzband, A.; Haszeldine, R.S. Cushion Gas in Hydrogen Storage—A Costly CAPEX or a Valuable Resource for Energy Crises? Hydrogen 2022, 3, 35. [Google Scholar] [CrossRef]
- Ocampo Mendoza, A. Storage Performance Analyses of Underground Hydrogen Storage in Depleted Gas Reservoirs. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2022. [Google Scholar]
- Kanaani, M.; Sedaee, B.; Asadian-Pakfar, M. Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs. J. Energy Storage 2022, 45, 103783. [Google Scholar] [CrossRef]
- Buzek, F.; Onderka, V.; Wolf, I. Methanogenic Bacteria as a Key Factor Involved in Changes of Town Gas Stored in an Underground Reservoir. FEMS Microbiol. Lett. 1990, 73, 221–224. [Google Scholar] [CrossRef]
- Al Homoud, R.; Machado, M.V.B.; Daigle, H.; Sepehrnoori, K.; Ates, H. Investigation on the Impact of Cushion Gases in Saline Aquifer: Implication for Underground H2 Storage. In Proceedings of the SPE Western Regional Meeting, Palo Alto, CA, USA, 16–18 April 2024; p. D021S011R001. [Google Scholar]
- Lysyy, M.; Fernø, M.; Ersland, G. Seasonal Hydrogen Storage in a Depleted Oil and Gas Field. Int. J. Hydrogen Energy 2021, 46, 25160–25174. [Google Scholar] [CrossRef]
- Zamehrian, M.; Sedaee, B. Underground Hydrogen Storage in a Partially Depleted Gas Condensate Reservoir: Influence of Cushion Gas. J. Pet. Sci. Eng. 2022, 212, 110304. [Google Scholar] [CrossRef]
- Heinemann, N.; Scafidi, J.; Pickup, G.; Thaysen, E.M.; Hassanpouryouzband, A.; Wilkinson, M.; Satterley, A.K.; Booth, M.G.; Edlmann, K.; Haszeldine, R.S. Hydrogen Storage in Saline Aquifers: The Role of Cushion Gas for Injection and Production. Int. J. Hydrogen Energy 2021, 46, 39284–39296. [Google Scholar] [CrossRef]
- Wang, G.; Pickup, G.; Sorbie, K.; Mackay, E. Scaling Analysis of Hydrogen Flow with Carbon Dioxide Cushion Gas in Subsurface Heterogeneous Porous Media. Int. J. Hydrogen Energy 2022, 47, 1752–1764. [Google Scholar] [CrossRef]
- Michael, K.; Golab, A.; Shulakova, V.; Ennis-King, J.; Allinson, G.; Sharma, S.; Aiken, T. Geological Storage of CO2 in Saline Aquifers—A Review of the Experience from Existing Storage Operations. Int. J. Greenh. Gas Control 2010, 4, 659–667. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 Storage Efficiency in Deep Saline Aquifers. Int. J. Greenh. Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Ringrose, P.S. The CCS Hub in Norway: Some Insights from 22 Years of Saline Aquifer Storage. Energy Procedia 2018, 146, 166–172. [Google Scholar] [CrossRef]
- Ringrose, P.S.; Furre, A.-K.; Gilfillan, S.M.V.; Krevor, S.; Landrø, M.; Leslie, R.; Meckel, T.; Nazarian, B.; Zahid, A. Storage of Carbon Dioxide in Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 471–494. [Google Scholar] [CrossRef]
- Hogan, K.B.; Hoffman, J.S.; Thompson, A.M. Methane on the Greenhouse Agenda. Nature 1991, 354, 181–182. [Google Scholar] [CrossRef]
- Mohajan, H. Dangerous Effects of Methane Gas in Atmosphere. Available online: https://mpra.ub.uni-muenchen.de/50844/ (accessed on 23 November 2023).
- Fletcher, S.E.M.; Schaefer, H. Rising Methane: A New Climate Challenge. Science 2019, 364, 932–933. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Park, K. Comparison of Nitrogen and Carbon Dioxide as Cushion Gas for Underground Gas Storage Reservoir. Geosyst. Eng. 2015, 18, 163–167. [Google Scholar] [CrossRef]
- Shoushtari, S.; Namdar, H.; Jafari, A. Utilization of CO2 and N2 as Cushion Gas in Underground Gas Storage Process: A Review. J. Energy Storage 2023, 67, 107596. [Google Scholar] [CrossRef]
- Spiteri, E.; Juanes, R.; Blunt, M.; Orr, F. A New Model of Trapping and Relative Permeability Hysteresis for All Wettability Characteristics. SPE J. 2008, 13, 277–288. [Google Scholar] [CrossRef]
- Al Ali, A. Numerical Analysis for Relative Permeability Hysteresis Models in Reservoir Simulation of CO2 Trapping in Underground Carbon Storage; OnePetro: Richardson, TX, USA, 2022. [Google Scholar]
- Jeong, G.S.; Lee, J.; Ki, S.; Huh, D.-G.; Park, C.-H. Effects of Viscosity Ratio, Interfacial Tension and Flow Rate on Hysteric Relative Permeability of CO2/Brine Systems. Energy 2017, 133, 62–69. [Google Scholar] [CrossRef]
- Edlmann, K.; Hinchliffe, S.; Heinemann, N.; Johnson, G.; Ennis-King, J.; McDermott, C.I. Cyclic CO2-H2O Injection and Residual Trapping: Implications for CO2 Injection Efficiency and Storage Security. Int. J. Greenh. Gas Control 2019, 80, 1–9. [Google Scholar] [CrossRef]
- Safari, A.; Zeng, L.; Nguele, R.; Sugai, Y.; Sarmadivaleh, M. Review on Using the Depleted Gas Reservoirs for the Underground H2 Storage: A Case Study in Niigata Prefecture, Japan. Int. J. Hydrogen Energy 2023, 48, 10579–10602. [Google Scholar] [CrossRef]
- Al Homoud, R.; Machado, M.V.B.; Daigle, H.; Sepehrnoori, K.; Ates, H. Impact of Wettability and Relative Permeability Hysteresis in Saline Aquifers; Implication of Hydrogen Underground Storage. In Proceedings of the SPE Western Regional Meeting, Palo Alto, CA, USA, 16–18 April 2024; p. D021S011R004. [Google Scholar]
- Development of an Integrated Work-Flow for Biochemical Underground Hydrogen Storage Modelling. Available online: https://www.politesi.polimi.it/handle/10589/210724 (accessed on 22 November 2023).
- Jahanbani Veshareh, M.; Thaysen, E.M.; Nick, H.M. Feasibility of Hydrogen Storage in Depleted Hydrocarbon Chalk Reservoirs: Assessment of Biochemical and Chemical Effects. Appl. Energy 2022, 323, 119575. [Google Scholar] [CrossRef]
- GEM, Compositional & Unconventional Reservoir Simulator Unconventional Reservoir Training. Available online: https://www.cmgl.ca/gem (accessed on 27 November 2023).
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fund. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Li, Y.-K.; Nghiem, L.X. Phase Equilibria of Oil, Gas and Water/Brine Mixtures from a Cubic Equation of State and Henry’s Law. Can. J. Chem. Eng. 1986, 64, 486–496. [Google Scholar] [CrossRef]
- Juanes, R.; Spiteri, E.J.; Orr, F.M., Jr.; Blunt, M.J. Impact of Relative Permeability Hysteresis on Geological CO2 Storage. Water Resour. Res. 2006, 42, W12418. [Google Scholar] [CrossRef]
- Machado, M.V.B.; Delshad, M.; Sepehrnoori, K. A Practical and Innovative Workflow to Support the Numerical Simulation of CO2 Storage in Large Field-Scale Models. SPE Reserv. Eval. Eng. 2023, 26, 1541–1552. [Google Scholar] [CrossRef]
- Delshad, M.; Umurzakov, Y.; Sepehrnoori, K.; Eichhubl, P.; Batista Fernandes, B.R. Hydrogen Storage Assessment in Depleted Oil Reservoir and Saline Aquifer. Energies 2022, 15, 8132. [Google Scholar] [CrossRef]
- Ershadnia, R.; Singh, M.; Mahmoodpour, S.; Meyal, A.; Moeini, F.; Hosseini, S.A.; Sturmer, D.M.; Rasoulzadeh, M.; Dai, Z.; Soltanian, M.R. Impact of Geological and Operational Conditions on Underground Hydrogen Storage. Int. J. Hydrogen Energy 2023, 48, 1450–1471. [Google Scholar] [CrossRef]
- Luboń, K.; Tarkowski, R. Numerical Simulation of Hydrogen Injection and Withdrawal to and from a Deep Aquifer in NW Poland. Int. J. Hydrogen Energy 2019, 45, 2068–2083. [Google Scholar] [CrossRef]
- Feldmann, F.; Hagemann, B.; Ganzer, L.; Panfilov, M. Numerical Simulation of Hydrodynamic and Gas Mixing Processes in Underground Hydrogen Storages. Environ. Earth Sci. 2016, 75, 1165. [Google Scholar] [CrossRef]
- Yekta, A.E.; Manceau, J.-C.; Gaboreau, S.; Pichavant, M.; Audigane, P. Determination of Hydrogen–Water Relative Permeability and Capillary Pressure in Sandstone: Application to Underground Hydrogen Injection in Sedimentary Formations. Transp. Porous Media 2018, 122, 333–356. [Google Scholar] [CrossRef]
- Bo, Z.; Boon, M.; Hajibeygi, H.; Hurter, S. Impact of Experimentally Measured Relative Permeability Hysteresis on Reservoir-Scale Performance of Underground Hydrogen Storage (UHS). Int. J. Hydrogen Energy 2023, 48, 13527–13542. [Google Scholar] [CrossRef]
- Lysyy, M.; Føyen, T.; Johannesen, E.B.; Fernø, M.; Ersland, G. Hydrogen Relative Permeability Hysteresis in Underground Storage. Geophys. Res. Lett. 2022, 49, e2022GL100364. [Google Scholar] [CrossRef]
- Wang, J.; Song, H.; Rasouli, V.; Killough, J. An Integrated Approach for Gas-Water Relative Permeability Determination in Nanoscale Porous Media. J. Pet. Sci. Eng. 2019, 173, 237–245. [Google Scholar] [CrossRef]
- Hashemi, L.; Blunt, M.; Hajibeygi, H. Pore-Scale Modelling and Sensitivity Analyses of Hydrogen-Brine Multiphase Flow in Geological Porous Media. Sci. Rep. 2021, 11, 8348. [Google Scholar] [CrossRef]
- Pan, B.; Liu, K.; Ren, B.; Zhang, M.; Ju, Y.; Gu, J.; Zhang, X.; Clarkson, C.R.; Edlmann, K.; Zhu, W.; et al. Impacts of Relative Permeability Hysteresis, Wettability, and Injection/Withdrawal Schemes on Underground Hydrogen Storage in Saline Aquifers. Fuel 2023, 333, 126516. [Google Scholar] [CrossRef]
- Carlson, F.M. Simulation of Relative Permeability Hysteresis to the Nonwetting Phase; OnePetro: Richardson, TX, USA, 1981. [Google Scholar]
- Land, C.S. Calculation of Imbibition Relative Permeability for Two- and Three-Phase Flow From Rock Properties. Soc. Pet. Eng. J. 1968, 8, 149–156. [Google Scholar] [CrossRef]
- Krevor, S.C.M.; Pini, R.; Zuo, L.; Benson, S.M. Relative Permeability and Trapping of CO2 and Water in Sandstone Rocks at Reservoir Conditions. Water Resour. Res. 2012, 48, W02532. [Google Scholar] [CrossRef]
- Killough, J.E. Reservoir Simulation With History-Dependent Saturation Functions. Soc. Pet. Eng. J. 1976, 16, 37–48. [Google Scholar] [CrossRef]
- Beattle, C.I.; Boberg, T.C.; McNab, G.S. Reservoir Simulation of Cyclic Steam Stimulation in the Cold Lake Oil Sands. SPE Reserv. Eng. 1991, 6, 200–206. [Google Scholar] [CrossRef]
- Kjosavik, A.; Ringen, J.K.; Skjaeveland, S.M. Relative Permeability Correlation for Mixed-Wet Reservoirs. SPE J. 2002, 7, 49–58. [Google Scholar] [CrossRef]
- Foroudi, S.; Gharavi, A.; Fatemi, M. Assessment of Two-Phase Relative Permeability Hysteresis Models for Oil/Water, Gas/Water and Gas/Oil Systems in Mixed-Wet Porous Media. Fuel 2022, 309, 122150. [Google Scholar] [CrossRef]
- Nazari, F.; Aghabozorgi Nafchi, S.; Vahabzadeh Asbaghi, E.; Farajzadeh, R.; Niasar, V.J. Impact of Capillary Pressure Hysteresis and Injection-Withdrawal Schemes on Performance of Underground Hydrogen Storage. Int. J. Hydrogen Energy 2024, 50, 1263–1280. [Google Scholar] [CrossRef]
- Bo, Z.; Zeng, L.; Chen, Y.; Xie, Q. Geochemical Reactions-Induced Hydrogen Loss during Underground Hydrogen Storage in Sandstone Reservoirs. Int. J. Hydrogen Energy 2021, 46, 19998–20009. [Google Scholar] [CrossRef]
- Li, K.; Horne, R.N. Numerical Simulation without Using Experimental Data of Relative Permeability. J. Pet. Sci. Eng. 2008, 61, 67–74. [Google Scholar] [CrossRef]
- Murphy, Z.W.; DiCarlo, D.A.; Flemings, P.B.; Daigle, H. Hydrate is a Nonwetting Phase in Porous Media. Geophys. Res. Lett. 2020, 47, e2020GL089289. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, C.; Bai, F.; Wang, W.; An, S.; Zhao, K.; Li, Z.; Li, J.; Sun, H. A Comprehensive Review of the Promising Clean Energy Carrier: Hydrogen Production, Transportation, Storage, and Utilization (HPTSU) Technologies. Fuel 2024, 355, 129455. [Google Scholar] [CrossRef]
- Bachu, S. Drainage and Imbibition CO2/Brine Relative Permeability Curves at in Situ Conditions for Sandstone Formations in Western Canada. Energy Procedia 2013, 37, 4428–4436. [Google Scholar] [CrossRef]
- Ershadnia, R.; Hajirezaie, S.; Amooie, A.; Wallace, C.D.; Gershenzon, N.I.; Hosseini, S.A.; Sturmer, D.M.; Ritzi, R.W.; Soltanian, M.R. CO2 Geological Sequestration in Multiscale Heterogeneous Aquifers: Effects of Heterogeneity, Connectivity, Impurity, and Hysteresis. Adv. Water Resour. 2021, 151, 103895. [Google Scholar] [CrossRef]
- Machado, M.V.B.; Delshad, M.; Sepehrnoori, K. The Interplay between Experimental Data and Uncertainty Analysis in Quantifying CO2 Trapping during Geological Carbon Storage. Clean Energy Sustain. 2024, 2, 10001. [Google Scholar] [CrossRef]
- Mahdi, D.S.; Al-Khdheeawi, E.A.; Yuan, Y.; Zhang, Y.; Iglauer, S. Hydrogen Underground Storage Efficiency in a Heterogeneous Sandstone Reservoir. Adv. Geo-Energy Res. 2021, 5, 437–443. [Google Scholar] [CrossRef]
- Prashant, J.; Saeed, M. Optimizing the Operational Efficiency of the Underground Hydrogen Storage Scheme in a Deep North Sea Aquifer through Compositional Simulations. J. Energy Storage 2023, 73, 108832. [Google Scholar] [CrossRef]
- Li, X. H2, CH4 and CO2 Adsorption on Cameo Coal: Insights into the Role of Cushion Gas in Hydrogen Geological Storage. Int. J. Hydrogen Energy 2024, 50, 879–892. [Google Scholar] [CrossRef]
Advantages | Disadvantages | References | ||
---|---|---|---|---|
Surface storage | High-pressure gas vessels |
|
| [2] |
Metal Hydrides |
|
| [3] | |
Liquid hydrogen in cryogenic tanks |
|
| [2] | |
Underground storage | Salt and rocks caverns |
|
| [4] |
Depleted reservoirs |
|
| [4] | |
Saline aquifers |
|
| [4,5] |
Property | Value |
---|---|
Horizontal Permeability (average) | 200 mD |
Porosity (average) | 20% |
Aquifer initial pressure | 20,500 kPa |
Aquifer temperature | 80 °C |
Rock compressibility | 5.8 × 10−7 kPa−1 |
Aquifer thickness | 90 m |
Aquifer Datum Depth | 2000 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Homoud, R.; Barbosa Machado, M.V.; Daigle, H.; Sepehrnoori, K.; Ates, H. Enhancing Hydrogen Recovery from Saline Aquifers: Quantifying Wettability and Hysteresis Influence and Minimizing Losses with a Cushion Gas. Hydrogen 2024, 5, 327-351. https://doi.org/10.3390/hydrogen5020019
Al Homoud R, Barbosa Machado MV, Daigle H, Sepehrnoori K, Ates H. Enhancing Hydrogen Recovery from Saline Aquifers: Quantifying Wettability and Hysteresis Influence and Minimizing Losses with a Cushion Gas. Hydrogen. 2024; 5(2):327-351. https://doi.org/10.3390/hydrogen5020019
Chicago/Turabian StyleAl Homoud, Rana, Marcos Vitor Barbosa Machado, Hugh Daigle, Kamy Sepehrnoori, and Harun Ates. 2024. "Enhancing Hydrogen Recovery from Saline Aquifers: Quantifying Wettability and Hysteresis Influence and Minimizing Losses with a Cushion Gas" Hydrogen 5, no. 2: 327-351. https://doi.org/10.3390/hydrogen5020019
APA StyleAl Homoud, R., Barbosa Machado, M. V., Daigle, H., Sepehrnoori, K., & Ates, H. (2024). Enhancing Hydrogen Recovery from Saline Aquifers: Quantifying Wettability and Hysteresis Influence and Minimizing Losses with a Cushion Gas. Hydrogen, 5(2), 327-351. https://doi.org/10.3390/hydrogen5020019