Debenzylation of Benzyl-Protected Methylcellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Synthesis of BnMC
2.2.1. Preparation of Lithium Dimsyl (Li-dimsyl) Solution
2.2.2. Benzylation
2.3. Debenzylation
2.3.1. Method-1
2.3.2. Method-2
Method-2a
Method-2b
Method-2c
2.3.3. Method-3 (Na/NH3)
2.4. ATR-IR Spectroscopy
2.5. H NMR Spectroscopy
2.6. Monomer Analysis by GLC
2.6.1. Gas-Liquid Chromatography
2.7. Oligomer Analysis by LC-MS
2.7.1. LC-ESI-MS
3. Results and Discussion
3.1. Debenzylation Method-1 (One-Pot Experiments)
3.2. Debenzylation Method-2 (2-Separate-Step Experiments)
3.3. Debenzylation Method-3 (Na/NH3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosma, P.; Wrodnigg, T.M.; Stütz, A.E. (Eds.) Carbohydrate Chemistry: Proven Synthetic Methods, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; Volume 5, ISBN 9781351256070. [Google Scholar]
- Ágoston, K.; Streicher, H.; Fügedi, P. Orthogonal protecting group strategies in carbohydrate chemistry. Tetrahedron Asymmetry 2016, 27, 707–728. [Google Scholar] [CrossRef]
- Das, R.; Mukhopadhyay, B. Chemical O-Glycosylations: An Overview. Chem. Open 2016, 5, 401–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipták, A.; Borbás, A.; Bajza, I. Protecting Group Manipulations in Carbohydrate Synthesis. In Comprehensive Glycoscience; Kamerling, H., Ed.; Elsevier: Oxford, UK, 2007; pp. 203–259. ISBN 978-0-444-51967-2. [Google Scholar]
- Wang, T.; Demchenko, A.V. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org. Biomol. Chem. 2019, 17, 4934–4950. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Grinstaff, M.W. Chemical synthesis of polysaccharides and polysaccharide mimetics. Prog. Polym. Sci. 2017, 74, 78–116. [Google Scholar] [CrossRef]
- Wuts, P.G.M. Protection for the hydroxyl group, including 1,2- and 1,3-diols. In Greene’s Protective Groups in Organic Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 17–471. ISBN 9781118905074. [Google Scholar]
- Werz, D.B. Chemical Synthesis of Carbohydrates and Their Surface Immobilization: A Brief Introduction. Methods Mol. Biol. 2012, 808, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Dane, E.L.; Grinstaff, M.W. Poly-amido-saccharides: Synthesis via Anionic Polymerization of a β-Lactam Sugar Monomer. J. Am. Chem. Soc. 2012, 134, 16255–16264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeberger, P.H. Automated oligosaccharide synthesis. Chem. Soc. Rev. 2008, 37, 19–28. [Google Scholar] [CrossRef]
- Iserloh, U.; Dudkin, V.; Wang, Z.-G.; Danishefsky, S.J. Reducing oligosaccharides via glycal assembly: On the remarkable stability of anomeric hydroxyl groups to global deprotection with sodium in liquid ammonia. Tetrahedron Lett. 2002, 43, 7027–7030. [Google Scholar] [CrossRef]
- Nakatsubo, F.; Kamitakahara, H.; Hori, M. Cationic Ring-Opening Polymerization of 3,6-Di-O-benzyl-α-d-glucose 1,2,4-Orthopivalate and the First Chemical Synthesis of Cellulose. J. Am. Chem. Soc. 1996, 118, 1677–1681. [Google Scholar] [CrossRef]
- Birch, A.J. The Birch reduction in organic synthesis. Pure Appl. Chem. 1996, 68, 553–556. [Google Scholar] [CrossRef]
- Micheel, F.; Brodde, O.-E.; Reinking, K. Versuche zur Polykondensation von 2,3,6-Tri-O-benzyl-D-glucopyranose und Polymerisation von 1,4-Anhydro-2,3,6-tri-O-benzyl-α-D-glucopyranose. Justus Liebigs Ann. Chem. 1974, 1974, 124–136. [Google Scholar] [CrossRef]
- Schuerch, C. Systematic approaches to the chemical synthesis of polysaccharides. Accounts Chem. Res. 1973, 6, 184–191. [Google Scholar] [CrossRef]
- Uryu, T.; Schuerch, C. Preparation of High Molecular Weight 2,3,4-Tri-O-benzyl-[1→6]-α-d-gluco-and-galactopyranan and [1→6]-α-D-Glucopyranan. Macromolecules 1971, 4, 342–345. [Google Scholar] [CrossRef]
- Ruckel, E.R.; Schuerch, C. Chemical synthesis of a dextran model, poly-α-(1→6)-anhydro-d-glucopyranose. Biopolymers 1967, 5, 515–523. [Google Scholar] [CrossRef]
- Ruckel, E.R.; Schuerch, C. Chemical Synthesis of a Stereoregular Linear Polysaccharide. J. Am. Chem. Soc. 1966, 88, 2605–2606. [Google Scholar] [CrossRef]
- Abe, M.; Sugimura, K.; Nishiyama, Y.; Nishio, Y. Rapid Benzylation of Cellulose in Tetra-n-butylphosphonium Hydroxide Aqueous Solution at Room Temperature. ACS Sustain. Chem. Eng. 2017, 5, 4505–4510. [Google Scholar] [CrossRef] [Green Version]
- Sundman, O.; Gillgern, T.; Broström, M. Homogenous benzylation of cellulose—Impact of different methods on product properties. Cellul. Chem. Technol. 2015, 49, 745–755. [Google Scholar]
- Rohleder, E.; Heinze, T. Comparison of Benzyl Celluloses Synthesized in Aqueous NaOH and Dimethyl Sulfoxide/Tetrabutylammonium Fluoride. Macromol. Symp. 2010, 294, 107–116. [Google Scholar] [CrossRef]
- Ge, W.; Shuai, J.; Wang, Y.; Zhou, Y.; Wang, X. Progress on chemical modification of cellulose in “green” solvents. Polym. Chem. 2022, 13, 359–372. [Google Scholar] [CrossRef]
- Heinze, T.; El Seoud, O.A.; Koschella, A. (Eds.) Cellulose Derivatives: Synthesis, Structure, and Properties; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-73167-4. [Google Scholar]
- Kamitakahara, H.; Hori, M.; Nakatsubo, F. Substituent Effect on Ring-Opening Polymerization of Regioselectively Acylated α-d-Glucopyranose 1,2,4-Orthopivalate Derivatives. Macromolecules 1996, 29, 6126–6131. [Google Scholar] [CrossRef]
- Ikegami, W.; Kamitakahara, H.; Teramoto, Y.; Takano, T. Synthesis of optically inactive cellulose via cationic ring-opening polymerization. Cellulose 2021, 28, 6125–6132. [Google Scholar] [CrossRef]
- Adelwöhrer, C.; Takano, T.; Nakatsubo, F.; Rosenau, T. Synthesis of 13C-Perlabeled Cellulose with more than 99% Isotopic Enrichment by a Cationic Ring-Opening Polymerization Approach. Biomacromolecules 2009, 10, 2817–2822. [Google Scholar] [CrossRef] [PubMed]
- Heinze, T.; El Seoud, O.A.; Koschella, A. (Eds.) Principles of Cellulose Derivatization. In Cellulose Derivatives: Synthesis, Structure, and Properties; Springer: Cham, Switzerland, 2018; pp. 259–292. [Google Scholar]
- Kamitakahara, H.; Koschella, A.; Mikawa, Y.; Nakatsubo, F.; Heinze, T.; Klemm, D. Syntheses and Comparison of 2,6-Di-O-methyl Celluloses from Natural and Synthetic Celluloses. Macromol. Biosci. 2008, 8, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.C.; Li, B.; Xu, D.; Edgar, K.J. Regioselective Esterification and Etherification of Cellulose: A Review. Biomacromolecules 2011, 12, 1956–1972. [Google Scholar] [CrossRef] [PubMed]
- Kamitakahara, H.; Funakoshi, T.; Takano, T.; Nakatsubo, F. Syntheses of 2,6-O-alkyl celluloses: Influence of methyl and ethyl groups regioselectively introduced at O-2 and O-6 positions on their solubility. Cellulose 2009, 16, 1167–1178. [Google Scholar] [CrossRef]
- Binkley, R.W.; Hehemann, D.G. A light-initiated process for rapid debenzylation of carbohydrates. J. Org. Chem. 1990, 55, 378–380. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Wing, R.E.; Meyers, C.Y. Specific debenzylation of alkylated carbohydrates via bromination-hydrolysis. J. Org. Chem. 1968, 33, 4292–4294. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ichikawa, H.; Sumitomo, H. Regioselectively modified stereoregular polysaccharides. 11. Synthesis of (1→6)-α-D-glucopyranans having one long hydrocarbon chain in position 3 in each repeating unit. Macromolecules 1990, 23, 3708–3710. [Google Scholar] [CrossRef]
- Rother, M.; Radke, W.; Mischnick, P. Block-Structured 1,4-d-Glucans by Transglycosidation of Cellulose Ethers. Macromol. Chem. Phys. 2016, 217, 889–900. [Google Scholar] [CrossRef]
- Hashemi, P.; Mischnick, P. 1,4-D-Glucan block copolymers: Synthesis and comprehensive structural characterization. Anal. Bioanal. Chem. 2020, 412, 1597–1610. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, P. Nano-Structuring of Glucan Ether Block-Copolymers and Structural Analysis by Quantitative Mass Spectrometry. In Dissertation; Technische Universität Braunschweig: Braunschweig, Germany, 2020. [Google Scholar]
- Cuers, J.; Unterieser, I.; Burchard, W.; Adden, R.; Rinken, M.; Mischnick, P. Simultaneous determination of substituent patterns in partially acid hydrolyzed O-Me/O-Me-d3-cellulose and quantification of the obtained oligomers by HPLC-ESI-MS. Carbohydr. Res. 2012, 348, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Mischnick, P.; Heinrich, J.; Gohdes, M.; Wilke, O.; Rogmann, N. Structure analysis of 1,4-glucan derivatives. Macromol. Chem. Phys. 2000, 201, 1985–1995. [Google Scholar] [CrossRef]
- Mischnick, P.; Voiges, K.; Cuers-Dammann, J.; Unterieser, I.; Sudwischer, P.; Wubben, A.; Hashemi, P. Analysis of the Heterogeneities of First and Second Order of Cellulose Derivatives: A Complex Challenge. Polysaccharides 2021, 2, 843–865. [Google Scholar] [CrossRef]
- Voiges, K.; Adden, R.; Rinken, M.; Mischnick, P. Critical re-investigation of the alditol acetate method for analysis of substituent distribution in methyl cellulose. Cellulose 2012, 19, 993–1004. [Google Scholar] [CrossRef]
- Nakagawa, A.; Fenn, D.; Koschella, A.; Heinze, T.; Kamitakahara, H. Physical properties of diblock methylcellulose derivatives with regioselective functionalization patterns: First direct evidence that a sequence of 2,3,6-tri-O-methyl-glucopyranosyl units causes thermoreversible gelation of methylcellulose. J. Polym. Sci. B. Polym. Phys. 2011, 49, 1539–1546. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Muenchow, H.L. Debenzylation of carbohydrate benzyl ethers and benzyl glycosides via free-radical bromination. Carbohydr. Res. 1973, 28, 253–262. [Google Scholar] [CrossRef]
- Mayhoub, A.; Talukdar, A.; Cushman, M. An Oxidation of Benzyl Methyl Ethers with NBS that Selectively Affords Either Aromatic Aldehydes or Aromatic Methyl Esters. J. Org. Chem. 2010, 75, 3507–3510. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Lowary, T. Recent advances in the synthesis of 2-deoxy-glycosides. Carbohydr. Res. 2009, 344, 1911–1940. [Google Scholar] [CrossRef]
- Summerfelt, S.T. Ozonation and UV irradiation—An introduction and examples of current applications. Aquac. Eng. 2003, 28, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Lämmerhardt, N.; Hashemi, P.; Mischnick, P. Comprehensive structural analysis of a set of various branched glucans by standard methylation analysis, 1H NMR spectroscopy, ESI-mass spectrometry, and capillary electrophoresis. Carbohydr. Res. 2020, 489, 107933. [Google Scholar] [CrossRef]
- Jorgensen, A.D.; Picel, K.C.; Stamoudis, V.C. Prediction of gas chromatography flame ionization detector response factors from molecular structures. Anal. Chem. 2012, 62, 683–689. [Google Scholar] [CrossRef]
- Scanlon, J.T.; Willis, D.E. Calculation of Flame Ionization Detector Relative Response Factors Using the Effective Carbon Number Concept. J. Chromatogr. Sci. 1985, 23, 333–340. [Google Scholar] [CrossRef]
- Sweet, D.P.; Shapiro, R.H.; Albersheim, P. Quantitative analysis by various g.l.c. response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 1975, 40, 217–225. [Google Scholar] [CrossRef]
- Ellison, S.L.; Williams, A. Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement. Available online: https://eurachem.org/index.php/publications/guides/quam (accessed on 18 June 2022).
- Leito, I.; Helm, I.; Jalukse, L. Using MOOCs for teaching analytical chemistry: Experience at University of Tartu. Anal. Bioanal. Chem. 2015, 407, 1277–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leito, I. Estimation of Measurement Uncertainties in Chemical Analysis: 6. Random and Systematic Effects Revisited. Available online: https://sisu.ut.ee/measurement/6-random-and-systematic-effects-revisited (accessed on 18 June 2022).
- Magnusson, B.; Näykki, T.; Hovind, H.; Krysell, M. Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories, 3.1th ed.Nordtest: Oslo, Norway, 2012. [Google Scholar]
- Majcen, N.; Gegevičius, V. (Eds.) Analytical Measurement: Measurement Uncertainty and Statistics; Publications Office: Luxembourg, 2012; ISBN 978-92-79-23071-4. [Google Scholar]
- Hashemi, P.; Luckau, L.; Mischnick, P.; Schmidt, S.; Stosch, R.; Wünsch, B. Biomacromolecules as tools and objects in nanometrology—Current challenges and perspectives. Anal. Bioanal. Chem. 2017, 409, 5901–5909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revathi, L.; Ravindar, L.; Fang, W.-Y.; Rakesh, K.P.; Qin, H.-L. Visible Light-Induced C-H Bond Functionalization: A Critical Review. Adv. Synth. Catal. 2018, 360, 4652–4698. [Google Scholar] [CrossRef]
- Urgoitia, G.; Sanmartin, R.; Herrero, M.T.; Domínguez, E.; Faces, R.S.M. Vanadium-Catalyzed Oxidative Debenzylation of O-Benzyl Ethers at ppm Level. Adv. Synth. Catal. 2016, 358, 3307–3312. [Google Scholar] [CrossRef]
- Lu, P.; Hou, T.; Gu, X.; Li, P. Visible-Light-Promoted Conversion of Alkyl Benzyl Ether to Alkyl Ester or Alcohol via O-α-sp3 C–H Cleavage. Org. Lett. 2015, 17, 1954–1957. [Google Scholar] [CrossRef]
- Chow, Y.L.; Zhao, D.C. Photodecomposition of N-bromosuccinimide. Radical chain carriers and their interrelations. J. Org. Chem. 1987, 52, 1931–1939. [Google Scholar] [CrossRef]
- Byun, E.-H.; Kim, J.-H.; Sung, N.-Y.; Choi, J.-I.; Lim, S.-T.; Kim, K.-H.; Yook, H.-S.; Byun, M.-W.; Lee, J.-W. Effects of gamma irradiation on the physical and structural properties of β-glucan. Radiat. Phys. Chem. 2008, 77, 781–786. [Google Scholar] [CrossRef]
- Cuers, J.; Rinken, M.; Adden, R.; Mischnick, P. Critical investigation of the substituent distribution in the polymer chains of hydroxypropyl methylcelluloses by (LC-)ESI-MS. Anal. Bioanal. Chem. 2013, 405, 9021–9032. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, C.H.; Fredenburgh, L.E.; Reamer, R.A.; Larsen, R.D.; Verhoeven, T.R.; Reider, P.J. Nature of N-Bromosuccinimide in Basic Media: The True Oxidizing Species in the Hofmann Rearrangement. J. Am. Chem. Soc. 1994, 116, 7947–7948. [Google Scholar] [CrossRef]
- Kostikov, R.R.; Francisco, S.-S.; Garranzo, M.; Murcia, M.C. 2,6-Di-t-butylpyridine. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L.A., Ed.; Wiley: Chichester, NY, USA, 1995; ISBN 0471936235. [Google Scholar]
- Benoit, R.L.; Fréchette, M.; Lefebvre, D. 2,6-Di-tert-butylpyridine: An unusually weak base in dimethylsulfoxide. Can. J. Chem. 1988, 66, 1159–1162. [Google Scholar] [CrossRef] [Green Version]
Method | Additives and Reaction Conditions | Comments | |
---|---|---|---|
Method 1 Without dialysis before alkaline treatment |
|
| |
Method 2 With dialysis before alkaline treatment | a |
|
|
b |
2,6-di-tert-butylpyridine (DTBP) |
| |
c |
|
| |
Method 3 | Na/liquid NH3 − 78 °C, 3 h |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, P.; Wenderoth, S.; Koschella, A.; Heinze, T.; Mischnick, P. Debenzylation of Benzyl-Protected Methylcellulose. Polysaccharides 2022, 3, 458-479. https://doi.org/10.3390/polysaccharides3030028
Hashemi P, Wenderoth S, Koschella A, Heinze T, Mischnick P. Debenzylation of Benzyl-Protected Methylcellulose. Polysaccharides. 2022; 3(3):458-479. https://doi.org/10.3390/polysaccharides3030028
Chicago/Turabian StyleHashemi, Payam, Saskia Wenderoth, Andreas Koschella, Thomas Heinze, and Petra Mischnick. 2022. "Debenzylation of Benzyl-Protected Methylcellulose" Polysaccharides 3, no. 3: 458-479. https://doi.org/10.3390/polysaccharides3030028
APA StyleHashemi, P., Wenderoth, S., Koschella, A., Heinze, T., & Mischnick, P. (2022). Debenzylation of Benzyl-Protected Methylcellulose. Polysaccharides, 3(3), 458-479. https://doi.org/10.3390/polysaccharides3030028