Physicochemical and Spectroscopic Characterization of Glycogen and Glycogen Phosphorylase b Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methods
3. Results
3.1. Glycogen Solution Properties
3.2. Glycogen–Glycogen Phosphorylase Complexation
3.3. Glycogen–Glycogen Phosphorylase Complexation Kinetics
3.4. The Enzyme Structure within the Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Melendez-Hevia, E.; Waddell, T.G.; Shelton, E.D. Optimization of Molecular Design in the Evolution of Metabolism: The Glycogen Molecule. Biochem. J. 1993, 295, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, R.; Meléndez-Hevia, E.; Cascante, M. How Did Glycogen Structure Evolve to Satisfy the Requirement for Rapid Mobilization of Glucose? A Problem of Physical Constraints in Structure Building. J. Mol. Evol. 1997, 45, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Besford, Q.A. The Sweetest Polymer Nanoparticles: Opportunities Ahead for Glycogen in Nanomedicine. Soft Matter 2024, 20, 3577–3584. [Google Scholar] [CrossRef] [PubMed]
- Daghlas, S.A.; Mohiuddin, S.S. Biochemistry, Glycogen. 2023 May 1. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- García-González, C.A.; Alnaief, M.; Smirnova, I. Polysaccharide-Based Aerogels—Promising Biodegradable Carriers for Drug Delivery Systems. Carbohydr. Polym. 2011, 86, 1425–1438. [Google Scholar] [CrossRef]
- Gurcan, C.; Taheri, H.; Bianco, A.; Delogu, L.G.; Yilmazer, A. A Closer Look at the Genotoxicity of Graphene Based Materials. J. Phys. Mater. 2020, 3, 014007. [Google Scholar] [CrossRef]
- Besford, Q.A.; Cavalieri, F.; Caruso, F. Glycogen as a Building Block for Advanced Biological Materials. Adv. Mater. 2020, 32, 1904625. [Google Scholar] [CrossRef] [PubMed]
- Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and Its Metabolism: Some New Developments and Old Themes. Biochem. J. 2012, 441, 763–787. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; González-Lucán, M.; Donapetry-García, C.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E. Glycogen Metabolism in Humans. BBA Clin. 2016, 5, 85–100. [Google Scholar] [CrossRef]
- Treadway, J.L.; Mendys, P.; Hoover, D.J. Glycogen Phosphorylase Inhibitors for Treatment of Type 2 Diabetes Mellitus. Expert Opin. Investig. Drugs 2001, 10, 439–454. [Google Scholar] [CrossRef]
- Zois, C.E.; Harris, A.L. Glycogen Metabolism Has a Key Role in the Cancer Microenvironment and Provides New Targets for Cancer Therapy. J. Mol. Med. 2016, 94, 137–154. [Google Scholar] [CrossRef]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, İ.; Yardim, M. Biomarkers in Acute Myocardial Infarction: Current Perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mair, J. Glycogen Phosphorylase Isoenzyme BB to Diagnose Ischaemic Myocardial Damage. Clin. Chim. Acta 1998, 272, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Falkowska, A.; Gutowska, I.; Goschorska, M.; Nowacki, P.; Chlubek, D.; Baranowska-Bosiacka, I. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int. J. Mol. Sci. 2015, 16, 25959–25981. [Google Scholar] [CrossRef]
- Newgard, C.B.; Hwang, P.K.; Fletterick, R.J. The Family of Glycogen Phosphorylases: Structure and Functio. Crit. Rev. Biochem. Mol. Biol. 1989, 24, 69–99. [Google Scholar] [CrossRef]
- Chrysina, E.D.; Chajistamatiou, A.; Chegkazi, M. From Structure—Based to Knowledge—Based Drug Design Through X-Ray Protein Crystallography: Sketching Glycogen Phosphorylase Binding Sites. Curr. Med. Chem. 2011, 18, 2620–2629. [Google Scholar] [CrossRef]
- Chehardoli, G.; Bahmani, A. Synthetic Strategies, SAR Studies, and Computer Modeling of Indole 2 and 3-Carboxamides as the Strong Enzyme Inhibitors: A Review. Mol. Divers. 2021, 25, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Minadakis, M.P.; Mavreas, K.F.; Neofytos, D.D.; Paschou, M.; Kogkaki, A.; Athanasiou, V.; Mamais, M.; Veclani, D.; Iatrou, H.; Venturini, A.; et al. A Glucose-Based Molecular Rotor Inhibitor of Glycogen Phosphorylase as a Probe of Cellular Enzymatic Function. Org. Biomol. Chem. 2022, 20, 2407–2423. [Google Scholar] [CrossRef] [PubMed]
- Klinov, S.V.; Chebotareva, N.A.; Lissovskaya, N.P.; Davidov, D.R.; Kurganov, B.I. The interaction of muscle glycogen phosphorylase b with glycogen. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1982, 709, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Karayianni, M.; Pispas, S. Complexation of Stimuli-Responsive Star-like Amphiphilic Block Polyelectrolyte Micelles with Lysozyme. Soft Matter 2012, 8, 8758–8769. [Google Scholar] [CrossRef]
- Karayianni, M.; Koufi, D.; Pispas, S. Development of Double Hydrophilic Block Copolymer/Porphyrin Polyion Complex Micelles towards Photofunctional Nanoparticles. Polymers 2022, 14, 5186. [Google Scholar] [CrossRef]
- Appleman, M.M.; Yunis, A.A.; Krebs, E.G.; Fischer, E.H. Comparative Studies on Glycogen Phosphorylase. J. Biol. Chem. 1963, 238, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- De Lange, R.J.; Kemp, R.G.; Riley, W.D.; Cooper, R.A.; Krebs, E.G. Activation of Skeletal Muscle Phosphorylase Kinase by Adenosine Triphosphate and Adenosine 3′,5′-Monophosphate. J. Biol. Chem. 1968, 243, 2200–2208. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Über Einen Die Erzeugung Und Verwandlung Des Lichtes Betreffenden Heuristischen Gesichtspunkt. Ann. Phys. 1905, 322, 132–148. [Google Scholar] [CrossRef]
- Kissa, E. Particle Characterization. In Dispersions; Routledge: London, UK, 2017; Volume 81, pp. 8–46. [Google Scholar]
- Huglin, M.B. Light Scattering from Polymer Solutions; Academic Press: London, UK; New York, NY, USA, 1972; ISBN 0123610508. [Google Scholar]
- Ioan, C.E.; Aberle, T.; Burchard, W. Solution Properties of Glycogen. 1. Dilute Solutions. Macromolecules 1999, 32, 7444–7453. [Google Scholar] [CrossRef]
- Ioan, C.E.; Aberle, T.; Burchard, W. Solution Properties of Glycogen. 2. Semidilute Solutions. Macromolecules 1999, 32, 8655–8662. [Google Scholar] [CrossRef]
- ThermoFisher Scientific. The Molecular Probes® Handbook—Introduction to Fluorescence Techniques. In The Molecular ProbesTM Handbook—A Guide to Fluorescent Probes and Labeling Technologies, 11th ed.; Johnson, I., Spence, M.T.Z., Eds.; Life Technologies: Carlsbad, CA, USA, 2010; pp. 3–9. [Google Scholar]
- Zhang, S.Z.; Zhao, F.L.; Li, K.A.; Tong, S.Y. Determination of Glycogen by Rayleigh Light Scattering. Anal. Chim. Acta 2001, 431, 133–139. [Google Scholar] [CrossRef]
- Morris, G.A.; Ang, S.; Hill, S.E.; Lewis, S.; Scha, B.; Nobbmann, U.; Harding, S.E. Molar mass and solution conformation of branched α(1→4), α(1→6) Glucans. Part I: Glycogens in water. Carbohydr. Polym. 2008, 71, 101–108. [Google Scholar] [CrossRef]
- Rolland-Sabaté, A.; Mendez-Montealvo, M.G.; Colonna, P.; Planchot, V. Online Determination of Structural Properties and Observation of Deviations from Power Law Behavior. Biomacromolecules 2008, 9, 1719–1730. [Google Scholar] [CrossRef]
- Sullivan, M.A.; O’Connor, M.J.; Umana, F.; Roura, E.; Jack, K.; Stapleton, D.I.; Gilbert, R.G. Molecular Insights into Glycogen α-Particle Formation. Biomacromolecules 2012, 13, 3805–3813. [Google Scholar] [CrossRef]
- Fernandez, C.; Rojas, C.C.; Nilsson, L. Size, Structure and Scaling Relationships in Glycogen from Various Sources Investigated with Asymmetrical Flow Field-Flow Fractionation and 1H NMR. Int. J. Biol. Macromol. 2011, 49, 458–465. [Google Scholar] [CrossRef]
- Filippov, S.K.; Sedlacek, O.; Bogomolova, A.; Vetrik, M.; Jirak, D.; Kovar, J.; Kucka, J.; Bals, S.; Turner, S.; Stepanek, P.; et al. Glycogen as a Biodegradable Construction Nanomaterial for in Vivo Use. Macromol. Biosci. 2012, 12, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Wojnilowicz, M.; Besford, Q.A.; Wu, Y.; Loh, X.J.; Braunger, J.A.; Glab, A.; Cortez-Jugo, C.; Caruso, F.; Cavalieri, F. Glycogen-Nucleic Acid Constructs for Gene Silencing in Multicellular Tumor Spheroids. Biomaterials 2018, 176, 34–49. [Google Scholar] [CrossRef]
- Ghisaidoobe, A.B.T.; Chung, S.J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [Google Scholar] [CrossRef] [PubMed]
- Smeller, L.; Meersman, F.; Heremans, K. Refolding Studies Using Pressure: The Folding Landscape of Lysozyme in the Pressure-Temperature Plane. Biochim. Biophys. Acta—Proteins Proteom. 2006, 1764, 497–505. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Andersen, K.K.; Westh, P.; Otzen, D.E. Unfolding of β-Sheet Proteins in SDS. Biophys. J. 2007, 92, 3674–3685. [Google Scholar] [CrossRef] [PubMed]
Name | Enzyme Concentration CGPb (mg/mL) | Total Complex Concentration CTot (mg/mL) | Enzyme/Glycogen Molar Ratio molGPb/molGlyc |
---|---|---|---|
Comp(1 + 0.1) | 0.02 | 0.22 | 1.8 |
Comp(1 + 0.5) | 0.1 | 0.3 | 9 |
Comp(1 + 1) | 0.2 | 0.4 | 18 |
Comp(1 + 1.5) | 0.3 | 0.5 | 27 |
Comp(1 + 2) | 0.4 | 0.6 | 36 |
Comp(1 + 3) | 0.6 | 0.8 | 54 |
Comp(1 + 4) | 0.8 | 1 | 72 |
Mw (106 g/mol) | Rg (nm) | Rh (nm) | ρ = Rg/Rh | A2 (10−6 mol mL/g2) |
---|---|---|---|---|
2.6 | 21.7 | 17.7 | 1.23 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakousi, P.; Karayianni, M.; Chrysina, E.D.; Pispas, S. Physicochemical and Spectroscopic Characterization of Glycogen and Glycogen Phosphorylase b Complexes. Polysaccharides 2024, 5, 225-240. https://doi.org/10.3390/polysaccharides5030017
Karakousi P, Karayianni M, Chrysina ED, Pispas S. Physicochemical and Spectroscopic Characterization of Glycogen and Glycogen Phosphorylase b Complexes. Polysaccharides. 2024; 5(3):225-240. https://doi.org/10.3390/polysaccharides5030017
Chicago/Turabian StyleKarakousi, Pandora, Maria Karayianni, Evangelia D. Chrysina, and Stergios Pispas. 2024. "Physicochemical and Spectroscopic Characterization of Glycogen and Glycogen Phosphorylase b Complexes" Polysaccharides 5, no. 3: 225-240. https://doi.org/10.3390/polysaccharides5030017
APA StyleKarakousi, P., Karayianni, M., Chrysina, E. D., & Pispas, S. (2024). Physicochemical and Spectroscopic Characterization of Glycogen and Glycogen Phosphorylase b Complexes. Polysaccharides, 5(3), 225-240. https://doi.org/10.3390/polysaccharides5030017