Statin Use in Metabolic Dysfunction-Associated Steatotic Liver Disease and Effects on Vibration-Controlled Transient Elastography-Derived Scores—A Population-Based Inverse Probability Treatment Weighting Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Definition
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics of Population
3.2. Fibrosis, At-Risk NASH/MASH, and Statin Use in MASLD
3.3. Lipophilic and Hydrophilic Statins in MASLD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 2016, 65, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Csermely, A.; Petracca, G.; Beatrice, G.; Corey, K.E.; Simon, T.G.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.E.; Ng, C.H.; Yong, J.N.; Chan, K.E.; Xiao, J.; Nah, B.; Bong, S.H.S.; Win, K.M.; Bwa, A.H.; Lim, W.H.; et al. A Meta-analysis on Associated Risk of Mortality in Nonalcoholic Fatty Liver Disease. Endocr. Pract. 2023, 29, 33–39. [Google Scholar] [CrossRef]
- Kim, D.; Konyn, P.; Sandhu, K.K.; Dennis, B.B.; Cheung, A.C.; Ahmed, A. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J. Hepatol. 2021, 75, 1284–1291. [Google Scholar] [CrossRef]
- Parola, M.; Pinzani, M. Liver fibrosis in NAFLD/NASH: From pathophysiology towards diagnostic and therapeutic strategies. Mol. Aspects Med. 2024, 95, 101231. [Google Scholar] [CrossRef]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 223–238. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Rong, L.; Zou, J.; Ran, W.; Qi, X.; Chen, Y.; Cui, H.; Guo, J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front. Endocrinol. 2022, 13, 1087260. [Google Scholar] [CrossRef]
- Force, U.S.P.S.T. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2022, 328, 746–753. [Google Scholar]
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Blais, P.; Lin, M.; Kramer, J.R.; El-Serag, H.B.; Kanwal, F. Statins Are Underutilized in Patients with Nonalcoholic Fatty Liver Disease and Dyslipidemia. Dig. Dis. Sci. 2016, 61, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.H.; Teng, M.L.; Chew, N.W.; Chan, K.E.; Yong, J.N.; Quek, J.; Tan, D.J.H.; Lim, W.H.; Lee, G.S.J.; Wong, J.; et al. Statins decrease overall mortality and cancer related mortality but are underutilized in NAFLD: A longitudinal analysis of 12,538 individuals. Expert. Rev. Gastroenterol. Hepatol. 2022, 16, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.-K.; Sonia, F.; Tracy, D.; Mang, M.; Juan, G.A. Impact of statin treatment on non-invasive tests based predictions of fibrosis in a referral pathway for NAFLD. BMJ Open Gastroenterol. 2022, 9, e000798. [Google Scholar]
- Boutari, C.; Pappas, P.D.; Anastasilakis, D.; Mantzoros, C.S. Statins’ efficacy in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 2195–2206. [Google Scholar] [CrossRef]
- Newsome, P.N.; Sasso, M.; Deeks, J.J.; Paredes, A.; Boursier, J.; Chan, W.-K.; Yilmaz, Y.; Czernichow, S.; Zheng, M.-H.; Wong, V.W.-S.; et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 2020, 5, 362–373. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Foucquier, J.; Younossi, Z.M.; Harrison, S.A.; Newsome, P.N.; Chan, W.K.; Yilmaz, Y.; De Ledinghen, V.; Costentin, C.; Zheng, M.H.; et al. Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores. J. Hepatol. 2023, 78, 247–259. [Google Scholar] [CrossRef]
- Shiba, K.; Kawahara, T. Using Propensity Scores for Causal Inference: Pitfalls and Tips. J. Epidemiol. 2021, 31, 457–463. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Kaewdech, A.; Sripongpun, P. Navigating the Nomenclature of Liver Steatosis: Transitioning from NAFLD to MAFLD and MASLD—Understanding Affinities and Differences. Siriraj Med. J. 2024, 76, 234–243. [Google Scholar] [CrossRef]
- Caussy, C.; Alquiraish, M.H.; Nguyen, P.; Hernandez, C.; Cepin, S.; Fortney, L.E.; Ajmera, V.; Bettencourt, R.; Collier, S.; Hooker, J.; et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018, 67, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Ziol, M.; Handra-Luca, A.; Kettaneh, A.; Christidis, C.; Mal, F.; Kazemi, F.; de Lédinghen, V.; Marcellin, P.; Dhumeaux, D.; Trinchet, J.C.; et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005, 41, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Campos-Murguía, A.; Ruiz-Margáin, A.; González-Regueiro, J.A.; Macías-Rodríguez, R.U. Clinical assessment and management of liver fibrosis in non-alcoholic fatty liver disease. World J. Gastroenterol. 2020, 26, 5919–5943. [Google Scholar] [CrossRef]
- Pennisi, G.; Enea, M.; Pandolfo, A.; Celsa, C.; Antonucci, M.; Ciccioli, C.; Infantino, G.; La Mantia, C.; Parisi, S.; Tulone, A.; et al. AGILE 3+ Score for the Diagnosis of Advanced Fibrosis and for Predicting Liver-related Events in NAFLD. Clin. Gastroenterol. Hepatol. 2023, 21, 1293–1302.e1295. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridi, M.; De Ledinghen, V.; Lupsor-Platon, M.; Bronte, F.; Boursier, J.; Elshaarawy, O.; Marra, F.; Thiele, M.; Markakis, G.; Payance, A.; et al. Agile scores in MASLD and ALD: External validation and their utility in clinical algorithms. J. Hepatol. 2024, 81, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Climent, E.; Benaiges, D.; Pedro-Botet, J. Hydrophilic or Lipophilic Statins? Front. Cardiovasc. Med. 2021, 8, 687585. [Google Scholar] [CrossRef]
- Chesnaye, N.C.; Stel, V.S.; Tripepi, G.; Dekker, F.W.; Fu, E.L.; Zoccali, C.; Jager, K.J. An introduction to inverse probability of treatment weighting in observational research. Clin. Kidney J. 2022, 15, 14–20. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Patel, J.; Soni, M.; Prokop, L.J.; Younossi, Z.; Sebastiani, G.; Ekstedt, M.; Hagstrom, H.; Nasr, P.; et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 2017, 65, 1557–1565. [Google Scholar] [CrossRef]
- Ng, C.H.; Lim, W.H.; Hui Lim, G.E.; Hao Tan, D.J.; Syn, N.; Muthiah, M.D.; Huang, D.Q.; Loomba, R. Mortality Outcomes by Fibrosis Stage in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 931–939.e935. [Google Scholar] [CrossRef]
- Chew, N.W.S.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; Lim, W.H.; Huang, D.Q.; Quek, J.; Fu, C.E.; et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab 2023, 35, 414–428.e413. [Google Scholar] [CrossRef]
- Chew, N.W.S.; Ng, C.H.; Muthiah, M.D.; Sanyal, A.J. Comprehensive Review and Updates on Holistic Approach Towards Non-Alcoholic Fatty Liver Disease Management with Cardiovascular Disease. Curr. Atheroscler. Rep. 2022, 24, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.W.; Yong, J.N.; Tan, D.J.H.; Fu, C.E.; Lim, W.H.; Xiao, J.; Chan, K.E.; Tan, C.; Goh, X.L.; Chee, D.; et al. Meta-analysis: Chemoprevention of hepatocellular carcinoma with statins, aspirin and metformin. Aliment. Pharmacol. Ther. 2023, 57, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Sharpton, S.R.; Loomba, R. Emerging role of statin therapy in the prevention and management of cirrhosis, portal hypertension, and HCC. Hepatology 2023, 78, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.; Reith, C.; Emberson, J.; Armitage, J.; Baigent, C.; Blackwell, L.; Blumenthal, R.; Danesh, J.; Smith, G.D.; DeMets, D.; et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 2016, 388, 2532–2561. [Google Scholar] [CrossRef]
- Simon, T.G.; King, L.Y.; Zheng, H.; Chung, R.T. Statin use is associated with a reduced risk of fibrosis progression in chronic hepatitis C. J. Hepatol. 2015, 62, 18–23. [Google Scholar] [CrossRef]
- Ayada, I.; van Kleef, L.A.; Zhang, H.; Liu, K.; Li, P.; Abozaid, Y.J.; Lavrijsen, M.; Janssen, H.L.A.; van der Laan, L.J.W.; Ghanbari, M.; et al. Dissecting the multifaceted impact of statin use on fatty liver disease: A multidimensional study. eBioMedicine 2023, 87. [Google Scholar] [CrossRef]
- Nascimbeni, F.; Aron-Wisnewsky, J.; Pais, R.; Tordjman, J.; Poitou, C.; Charlotte, F.; Bedossa, P.; Poynard, T.; Clément, K.; Ratziu, V. Statins, antidiabetic medications and liver histology in patients with diabetes with non-alcoholic fatty liver disease. BMJ Open Gastroenterol. 2016, 3, e000075. [Google Scholar] [CrossRef]
- Zhou, X.-D.; Kim, S.U.; Yip, T.C.-F.; Petta, S.; Nakajima, A.; Tsochatzis, E.; Boursier, J.; Bugianesi, E.; Hagström, H.; Chan, W.K.; et al. Long-term liver-related outcomes and liver stiffness progression of statin usage in steatotic liver disease. Gut 2024, 73, 1883–1892. [Google Scholar] [CrossRef]
- Ciardullo, S.; Perseghin, G. Statin use is associated with lower prevalence of advanced liver fibrosis in patients with type 2 diabetes. Metabolism 2021, 121, 154752. [Google Scholar] [CrossRef]
- Simon, T.G.; Duberg, A.S.; Aleman, S.; Hagstrom, H.; Nguyen, L.H.; Khalili, H.; Chung, R.T.; Ludvigsson, J.F. Lipophilic Statins and Risk for Hepatocellular Carcinoma and Death in Patients With Chronic Viral Hepatitis: Results From a Nationwide Swedish Population. Ann. Intern. Med. 2019, 171, 318–327. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Wang, M.; Shi, J.; Jia, X.; Dang, S. A Meta-Analysis of Statin Use and Risk of Hepatocellular Carcinoma. Can. J. Gastroenterol. Hepatol. 2022, 2022, 5389044. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Odden, M.C.; Nguyen, M.H. Statin Use and Reduced Hepatocellular Carcinoma Risk in Patients With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 435–444.e436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, S.; Liu, D.; Wang, Y.; Tan, Y. Statin can reduce the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2023, 35, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Polpichai, N.; Saowapa, S.; Danpanichkul, P.; Chan, S.Y.; Sierra, L.; Blagoie, J.; Rattananukrom, C.; Sripongpun, P.; Kaewdech, A. Beyond the Liver: A Comprehensive Review of Strategies to Prevent Hepatocellular Carcinoma. J. Clin. Med. 2024, 13, 6770. [Google Scholar] [CrossRef]
- Vargas, J.I.; Arrese, M.; Shah, V.H.; Arab, J.P. Use of Statins in Patients with Chronic Liver Disease and Cirrhosis: Current Views and Prospects. Curr. Gastroenterol. Rep. 2017, 19, 43. [Google Scholar] [CrossRef]
- Koh, K.K. Effects of statins on vascular wall: Vasomotor function, inflammation, and plaque stability. Cardiovasc. Res. 2000, 47, 648–657. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Austin, P.C.; Stuart, E.A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 2015, 34, 3661–3679. [Google Scholar] [CrossRef]
- Brookhart, M.A.; Schneeweiss, S.; Rothman, K.J.; Glynn, R.J.; Avorn, J.; Stürmer, T. Variable selection for propensity score models. Am. J. Epidemiol. 2006, 163, 1149–1156. [Google Scholar] [CrossRef]
Statin Users | Non-Statin Users | p-Value | |
---|---|---|---|
Age (years) | 66 (IQR: 58 to 73) | 53 (IQR: 39 to 64) | <0.01 * |
Male gender (%) | 57 (95% CI: 52 to 62) | 50 (95% CI: 47 to 53) | 0.02 * |
Diabetes (%) | 62 (95% CI: 57 to 67) | 26 (95% CI: 23 to 29) | <0.01 * |
Hypertension (%) | 86 (95% CI: 82 to 89) | 47 (95% CI: 44 to 51) | <0.01 * |
HbA1c (%) | 6.4 (IQR: 5.8 to 7.4) | 5.7 (IQR: 5.4 to 6.2) | <0.01 * |
Fasting Glucose (mmol/L) | 7.05 (IQR: 6.05 to 8.77) | 6.05 (IQR: 5.61 to 6.77) | <0.01 * |
Body Mass Index (kg/m2) | 32.0 (IQR: 28.5 to 37.4) | 32.5 (IQR: 28.2 to 37.7) | 0.48 |
Weight (kg) | 91.0 (IQR: 76.3 to 104.8) | 90.9 (IQR: 77.2 to 107.9) | 0.63 |
Waist circumference (cm) | 113.1 (IQR: 102 to 123) | 108.6 (IQR: 98.9 to 119.7) | <0.01 * |
Platelet (1000 cells/uL) | 228 (IQR: 191 to 268) | 244 (IQR: 207 to 288) | <0.01 * |
Total Bilirubin (umol/L) | 6.84 (IQR: 5.13 to 10.26) | 6.84 (IQR: 5.13 to 8.55) | 0.02 * |
LDL cholesterol (mmol/L) | 2.25 (IQR: 1.71 to 2.72) | 3.08 (IQR: 2.46 to 3.57) | <0.01 * |
HDL cholesterol (mmol/L) | 1.16 (IQR: 0.88 to 1.4) | 1.19 (IQR: 1.01 to 1.4) | 0.54 |
Total cholesterol (mmol/L) | 4.27 (IQR: 3.70 to 5.04) | 5.02 (IQR: 4.42 to 5.72) | <0.01 * |
Triglycerides (mmol/L) | 1.42 (IQR: 1.06 to 1.95) | 1.26 (IQR: 0.9 to 1.86) | 0.04 * |
Ethnicity (%) | 0.01 * | ||
Mexican American | 11 (95% CI: 15 to 20) | 17 (95% CI: 15 to 20) | |
Hispanic | 9 (95% CI: 7 to 12) | 8 (95% CI: 6 to 10) | |
White | 44 (95% CI: 39 to 49) | 36 (95% CI: 33 to 39) | |
Black | 17 (95% CI: 14 to 21) | 20 (95% CI: 17 to 22) | |
Other Race | 18 (95% CI: 15 to 22) | 19 (95% CI: 17 to 22) | |
Liver parameters | |||
CAP Score (dB/m) | 329 (IQR: 307 to 353) | 304 (IQR: 304 to 353) | 0.16 |
FAST score | 0.13 (IQR: 0.06 to 0.24) | 0.12 (IQR: 0.05 to 0.25) | 0.99 |
LSM values (kPa) | 5.8 (IQR: 4.7 to 7.5) | 5.7 (IQR: 4.5 to 7.4) | 0.31 |
At risk of NASH/MASH (FAST ≥ 0.67) | 0.02 (95% CI: 0.01 to 0.04) | 0.03 (95% CI: 0.02 to 0.04) | 0.51 |
Not at risk of NASH/MASH (FAST ≤ 0.35) | 0.86 (95% CI: 0.82 to 0.89) | 0.85 (95% CI: 0.82 to 0.87) | 0.56 |
Significant fibrosis | 0.18 (95% CI: 0.14 to 0.22) | 0.17 (95% CI: 0.14 to 0.19) | 0.58 |
Advanced fibrosis | 0.09 (95% CI: 0.07 to 0.13) | 0.09 (95% CI: 0.07 to 0.11) | 0.93 |
Unadjusted | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
Odd Ratios (95% CI) | p Value | Odd Ratios (95% CI) | p Value | Odd Ratios (95% CI) | p Value | |
At Risk NASH/MASH | 0.393 (95% CI: 0.148 to 1.046) | 0.06 | 0.365 (95% CI: 0.121 to 1.097) | 0.07 | 0.289 (95% CI: 0.096 to 0.867) | 0.03 * |
Significant Fibrosis | 0.729 (95% CI: 0.466to 1.139) | 0.17 | 0.666 (95% CI: 0.380 to 1.167) | 0.16 | 0.540 (95% CI: 0.306 to 0.953) | 0.03 * |
Advanced Fibrosis | 0.689 (95% CI: 0.393 to 1.209) | 0.19 | 0.644 (95% CI: 0.318 to 1.302) | 0.22 | 0.524 (95% CI: 0.261 to 1.052) | 0.07 |
High AGILE 3+ score | 0.797 (95% CI 0.477 to 1.330) | 0.39 | 0.580 (95% CI: 0.324 to 1.034) | <0.01 * | 0.409 (95% CI: 0.224 to 0.747) | <0.01 * |
Unadjusted | Model 1 | Model 2 | ||||
Beta (95% CI) | β value | Beta (95% CI) | β value | Beta(95% CI) | β value | |
LSM FAST Score | −0.400 (95% CI: −0.915 to −0.115) −0.005 (95% CI: −0.042 to 0.032) | 0.13 0.79 | −0.571 (95% CI: −0.994 to −0.148) −0.023 (95% CI: −0.044 to −0.001) | <0.01 * 0.04 | −1.170 (95% CI: −1.664 to −0.676 −0.039 (95% CI: −0.068 to −0.009) | <0.01 * 0.01 * |
Hydrophilic Statins | Lipophilic Statins | |||
---|---|---|---|---|
Effect Size (95% CI) | Effect Size (95% CI) | |||
Unadjusted model | ||||
At Risk NASH/MASH (FAST ≥ 0.67) | OR: 0.402 (95% CI: 0.050 to 3.164) | p = 0.39 | OR: 0.392 (95% CI: 0.138 to 1.115) | p = 0.08 |
Significant Fibrosis | OR: 0.810 (95% CI: 0.365 to1.797) | p = 0.61 | OR: 0.712 (95% CI: 0.438 to 1.157) | p = 0.17 |
Advanced Fibrosis | OR: 0.731 (95% CI: 0.283 to 1.892) | p = 0.52 | OR: 0.680 (95% CI 0.367 to 1.262) | p = 0.22 |
High AGILE 3+ score | OR: 0.697 (95% CI: 0.282 to 1.722) | p = 0.43 | OR: 0.819 (95% CI: 0.472 to 1.422) | p = 0.48 |
Model 1 | ||||
At Risk NASH/MASH (FAST ≥ 0.67) | OR: 0.460 (95% CI: 0.057 to 3.681) | p = 0.46 | OR: 0.348 (95% CI: 0.103 to 1.179) | p = 0.09 |
Significant Fibrosis | OR: 0.873 (95% CI: 0.367 to 2.079) | p = 0.76 | OR: 0.626 (95% CI: 0.334 to 1.174) | p = 0.14 |
Advanced Fibrosis | OR: 0.820 (95% CI: 0.296 to 2.271) | p = 0.70 | OR: 0.611 (95% CI: 0.276 to 1.350) | p = 0.22 |
High AGILE 3+ score | 0.637 (95% CI: 0.255 to 1.588) | p = 0.33 | OR: 0.568 (95% CI: 0.300 to 1.074) | p = 0.08 |
LSM | Beta −0.529 (95% CI: −0.97 to −0.088) | β = 0.02 * | Beta −0.805 (95% CI: −1.337 to −0.273) | β = <0.01 * |
FAST score | Beta −0.013 (95% CI: −0.092 to 0.066) | β = 0.75 | Beta −0.022 (95% CI: −0.049 to 0.004) | β= 0.10 |
Model 2 | ||||
At Risk NASH/MASH (FAST ≥ 0.67) | OR: 0.384 (95% CI: 0.048 to 3.084) | p = 0.37 | OR: 0.273 (95% CI: 0.081 to 0.922) | p = 0.04 |
Significant Fibrosis | OR: 0.726 (95% CI: 0.285 to 1.846) | p = 0.50 | OR: 0.506 (95% CI: 0.272 to 0.942) | p = 0.03 |
Advanced Fibrosis | OR: 0.680 (95% CI: 0.232 to 1.999) | p = 0.48 | OR: 0.496 (95% CI: 0.230 to 1.068) | p = 0.07 |
High AGILE 3+ score | OR: 0.451 (95% CI: 0.172 to 1.184) | p = 0.11 | OR: 0.402 (95% CI: 0.210 to 0.767) | p = <0.01 * |
LSM | Beta −1.016 (95% CI: −1.456 to −0.576) | β ≤ 0.01 * | Beta −1.201 (95% CI: −1.765 to −0.638) | β = <0.01 * |
FAST score | Beta −0.038 (95% CI: −0.096 to 0.021) | β = 0.21 | Beta −0.039 (95% CI: −0.075 to 0) | β = 0.04 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polpichai, N.; Saowapa, S.; Jaroenlapnopparat, A.; Sierra, L.; Danpanichkul, P.; Fangsaard, P.; Wattanachayakul, P.; Kaewdech, A. Statin Use in Metabolic Dysfunction-Associated Steatotic Liver Disease and Effects on Vibration-Controlled Transient Elastography-Derived Scores—A Population-Based Inverse Probability Treatment Weighting Analysis. Livers 2024, 4, 677-687. https://doi.org/10.3390/livers4040046
Polpichai N, Saowapa S, Jaroenlapnopparat A, Sierra L, Danpanichkul P, Fangsaard P, Wattanachayakul P, Kaewdech A. Statin Use in Metabolic Dysfunction-Associated Steatotic Liver Disease and Effects on Vibration-Controlled Transient Elastography-Derived Scores—A Population-Based Inverse Probability Treatment Weighting Analysis. Livers. 2024; 4(4):677-687. https://doi.org/10.3390/livers4040046
Chicago/Turabian StylePolpichai, Natchaya, Sakditad Saowapa, Aunchalee Jaroenlapnopparat, Leandro Sierra, Pojsakorn Danpanichkul, Panisara Fangsaard, Phuuwadith Wattanachayakul, and Apichat Kaewdech. 2024. "Statin Use in Metabolic Dysfunction-Associated Steatotic Liver Disease and Effects on Vibration-Controlled Transient Elastography-Derived Scores—A Population-Based Inverse Probability Treatment Weighting Analysis" Livers 4, no. 4: 677-687. https://doi.org/10.3390/livers4040046
APA StylePolpichai, N., Saowapa, S., Jaroenlapnopparat, A., Sierra, L., Danpanichkul, P., Fangsaard, P., Wattanachayakul, P., & Kaewdech, A. (2024). Statin Use in Metabolic Dysfunction-Associated Steatotic Liver Disease and Effects on Vibration-Controlled Transient Elastography-Derived Scores—A Population-Based Inverse Probability Treatment Weighting Analysis. Livers, 4(4), 677-687. https://doi.org/10.3390/livers4040046