Progressive Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) from a Young Age Due to a Rare Genetic Disorder, Familial Partial Lipodystrophy: A Case Report and Review of the Literature
Abstract
:1. Introduction
- (1)
- BMI > 25 kg/m2 or waist circumference of more than 94 cm in males and more than 80 cm in females;
- (2)
- Fasting serum glucose ≥ 5.6 mmol/L (100 mg/dL) or 2 h post-load glucose levels ≥ 7.8 mmol/L (≥140 mg/dL) or HbA1C ≥ 5.7% (39 mmol/L) or type 2 diabetes or treatment for type 2 diabetes;
- (3)
- Blood pressure > 130/85 mmHg or specific antihypertensive drug treatment;
- (4)
- Plasma triglycerides ≥ 1.70 mmol/L (150 mg/dL) or lipid-lowering treatment;
- (5)
- Plasma HDL-cholesterol ≤ 1.0 mmol/L (40 mg/dL) in males and ≤1.3 mmol/L (50 mg/dL) or lipid-lowering treatment.
2. Case Report
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO); European Association for the Study of the Liver (EASL). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Mózes, F.E.; Lee, J.A.; Selvaraj, E.A.; Jayaswal, A.N.A.; Trauner, M.; Boursier, J.; Fournier, C.; Staufer, K.; Stauber, R.E.; Bugianesi, E.; et al. Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: An individual patient data meta-analysis. Gut 2022, 71, 1006–1019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braude, M.; Roberts, S.; Majeed, A.; Lubel, J.; Prompen, J.; Dev, A.; Sievert, W.; Bloom, S.; Gow, P.; Kemp, W. Liver stiffness (Fibroscan®) is a predictor of all-cause mortality in people with non-alcoholic fatty liver disease. Liver Int. 2023, 43, 90–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Ciardullo, S.; Vergani, M.; Perseghin, G. Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes: Screening, Diagnosis, and Treatment. J. Clin. Med. 2023, 12, 5597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciardullo, S.; Perseghin, G. Trends in prevalence of probable fibrotic non-alcoholic steatohepatitis in the United States, 1999-2016. Liver Int. 2023, 43, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Archer, A.J.; Belfield, K.J.; Orr, J.G.; Gordon, F.H.; Abeysekera, K.W. EASL clinical practice guidelines: Non-invasive liver tests for evaluation of liver disease severity and prognosis. Frontline Gastroenterol. 2022, 13, 436–439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oral, E.A.; Simha, V.; Ruiz, E.; Andewelt, A.; Premkumar, A.; Snell, P.; Wagner, A.J.; DePaoli, A.M.; Reitman, M.L.; Taylor, S.I.; et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 2002, 346, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Araujo-Vilar, D.; Cheung, P.T.; Dunger, D.; Garg, A.; Jack, M.; Mungai, L.; Oral, E.A.; Patni, N.; Rother, K.I.; et al. The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 4500–4511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, R.J.; Valencia, A.; Startzell, M.; Cochran, E.; Walter, P.J.; Garraffo, H.M.; Cai, H.; Gharib, A.M.; Ouwerkerk, R.; Courville, A.B.; et al. Metreleptin-mediated improvements in insulin sensitivity are independent of food intake in humans with lipodystrophy. J. Clin. Investig. 2018, 128, 3504–3516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, R.J.; Oral, E.A.; Cochran, E.; Araújo-Vilar, D.; Savage, D.B.; Long, A.; Fine, G.; Salinardi, T.; Gorden, P. Long-term effectiveness and safety of metreleptin in the treatment of patients with generalized lipodystrophy. Endocrine 2018, 60, 479–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oral, E.A.; Gorden, P.; Cochran, E.; Araújo-Vilar, D.; Savage, D.B.; Long, A.; Fine, G.; Salinardi, T.; Brown, R.J. Long-term effectiveness and safety of metreleptin in the treatment of patients with partial lipodystrophy. Endocrine 2019, 64, 500–511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akinci, B.; Subauste, A.; Ajluni, N.; Esfandiari, N.H.; Meral, R.; Neidert, A.H.; Eraslan, A.; Hench, R.; Rus, D.; McKenna, B.; et al. Metreleptin therapy for nonalcoholic steatohepatitis: Open-label therapy interventions in two different clinical settings. Med 2021, 2, 814–835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Le, M.H.; Le, D.M.; Baez, T.C.; Wu, Y.; Ito, T.; Lee, E.Y.; Lee, K.; Stave, C.D.; Henry, L.; Barnett, S.D.; et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1,201,807 persons. J. Hepatol. 2023, 79, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K.; Isaacs, S.; Barb, D.; Basu, R.; Caprio, S.; Garvey, W.T.; Kashyap, S.; Mechanick, J.I.; Mouzaki, M.; Nadolsky, K.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr. Pract. 2022, 28, 528–562. [Google Scholar] [CrossRef] [PubMed]
Medical History | Physical Examination | Body Composition | Metabolic Status | Serum Leptin Levels | Genetic Testing |
---|---|---|---|---|---|
-Positive family history; -History of PCO syndrome, non-alcoholic acute pancreatitis, or liver fibrosis. | -Loss of subcutaneous fat (occurring around puberty); -Muscular hypertrophy; -Prominent veins (phlebomegaly); -Acantosis nigricans; -Eruptive xanthomas; -Hirsutism; -Cushingoid appearance; -Acromegaloid appearance; -Progeroid appearance; -Heart diseases: arterial hypertension, cardiomyopathy, arrhythmias. | -Non-alcoholic steatotic liver in a non-obese individual; -Liver fibrosisto cirrhosis; dual-energy X-ray absorptiometry (DXA) and whole-body magnetic resonance imaging can confirm a pattern of fat loss. | -High triglyceride levels; -Low HDL-cholesterol levels; -Insulin resistance/diabetes mellitus; -Renal dysfunction. | Low leptin levels (however, there are no defined serum leptin levels). | To confirm the diagnosis, genetic counselling and screening of family members are required. |
Time Point | Therapy | HbA1C 4.3–6.1% | Triglycerides <150 mg/dL | AST (10–35) ALT (10–35) | Liver Stiffness | CAP |
---|---|---|---|---|---|---|
First admission (8th week of pregnancy) | Strict MCT diet | 6.4% | 8074 mg/dL | N.A. | 5.7 kPa | 355 dB/m |
1.5 years postpartum | Strict diet; insulin; metformin; empagliflozinfibrate; omega-3 | 8.7% | 2437 mg/dL | 82 U/L 84 U/L | 8.7 kPa | 313 dB/m |
After starting metreleptin | Metreleptin; metformin; empagliflozinfibrate; omega-3 | 5.9% (after 3 months) | 263 mg/dL (after 3 months) | 12 U/L 19 U/L (after 3 months) | 3.6 kPa (after 6 months) | 386 dB/m (after 6 months) |
Therapy | Modality | Advantages | Limitations |
---|---|---|---|
Lifestyle: -diet; -exercise | -Mediterranean diet, avoiding alcohol and smoking; -At least 150 min per week of moderate training or 75 min per week of intensive training | CVD risk improvement; weight reduction; improvement in liver injury | Multidisciplinary patient support is needed (education, behavioural therapy); low-threshold availability is needed |
Metformin | 500–2000 mg daily dose, 1–2 daily oral intake | Insulin resistance improvement; glycaemic control; no risk for hypoglycaemia; weight reduction; safe to use for MASLD(including compensated liver cirrhosis) | Histological improvement in steatohepatitis and fibrosis not confirmed so far; gastrointestinal side effects; hepatic function: contraindicated in hepatic decompensation; renal function: contraindicated in renal decompensation (eGFR < 30 mL/min) |
GLP1-RA (glucagon-like peptide 1 receptor agonists) | Weekly subcutaneous injections | Glycaemic control; no risk for hypoglycaemia; CVD risk improvement; weight reduction; safe to use for MASH (including compensated liver cirrhosis) | Histological improvement in steatohepatitis and fibrosis not confirmed so far; gastrointestinal side effects, incl. pancreatitis; hepatic function: contraindicated in decompensated liver cirrhosis; renal function: contraindicated in end-stage renal failure (eGFR < 15 mL/min) |
Dual-agonist GLP1-GIP (glucagon-like peptide 1 receptor agonists and glucose-dependent insulinotropic polypeptide) | Weekly subcutaneous injections | Glycaemic control; no risk for hypoglycaemia; weight reduction | Gastrointestinal side effects incl. pancreatitis; hepatic function: contraindicated in decompensated liver cirrhosis; renal function: contraindicated in end-stage renal failure (eGFR < 15 mL/min) |
DPP4-I (dipeptidylpeptidase 4 inhibitors) | 25–100 mg daily oral intake | Glycaemic control; no risk for hypoglycaemia | Histological improvement in steatohepatitis and fibrosis not confirmed so far; risk of pancreatitis; hepatic function: contraindicated in decompensated liver cirrhosis; renal function: dose reduction, if eGFR < 45 mL/min, contraindicated in end-stage renal failure (eGFR < 15 mL/min) |
SGLT2-I (sodium-glucose transporter 2 inhibitors) | Daily oral intake | Glycaemic control; no risk for hypoglycaemia; CVD risk improvement; weight reduction; safe to use for MASLD; approved for heart failure and chronic kidney disease treatment | Histological improvement in steatohepatitis and fibrosis not confirmed so far; euglycemic ketoacidosis; urogenital infections; hepatic function: dose reduction in Child B cirrhosis; contraindicated in decompensated liver cirrhosis; renal function: dose reduction, if eGFR < 60 mL/min |
Insulin | 1–5 times daily subcutaneous injections | Glycaemic control; possible in end-stage hepatic or renal diseases | Hypoglycaemia; weight gain |
Pioglitazone (peroxisome proliferator-activated receptor agonist) | daily oral intake | Glycaemic control; insulin resistance improvement; possible histological improvement in steatohepatitis | Weight gain; bone loss in postmenopausal women; fibrosis regression is not confirmed so far; not approved in all countries as indicated on label |
Metreleptin (recombinant leptin) in confirmed lipodystrophy | daily subcutaneous injections; 3.0–7.5 mg | Glycaemic and lipid improvement; weight reduction; histologically confirmed improvement in steatohepatitis | Hypoglycaemia; not been studied in patients with impaired renal or hepatic function, so no dosage recommendations can be given |
Resmetirom (beta-thyroid hormone receptor agonist) | daily oral intake | Histologically confirmed improvement in steatohepatitis and fibrosis | Not approved in all countries as indicated on label; contraindicated in liver cirrhosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorona, E.; Sorkina, E.; Trebicka, J. Progressive Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) from a Young Age Due to a Rare Genetic Disorder, Familial Partial Lipodystrophy: A Case Report and Review of the Literature. Livers 2024, 4, 688-695. https://doi.org/10.3390/livers4040047
Vorona E, Sorkina E, Trebicka J. Progressive Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) from a Young Age Due to a Rare Genetic Disorder, Familial Partial Lipodystrophy: A Case Report and Review of the Literature. Livers. 2024; 4(4):688-695. https://doi.org/10.3390/livers4040047
Chicago/Turabian StyleVorona, Elena, Ekaterina Sorkina, and Jonel Trebicka. 2024. "Progressive Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) from a Young Age Due to a Rare Genetic Disorder, Familial Partial Lipodystrophy: A Case Report and Review of the Literature" Livers 4, no. 4: 688-695. https://doi.org/10.3390/livers4040047
APA StyleVorona, E., Sorkina, E., & Trebicka, J. (2024). Progressive Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) from a Young Age Due to a Rare Genetic Disorder, Familial Partial Lipodystrophy: A Case Report and Review of the Literature. Livers, 4(4), 688-695. https://doi.org/10.3390/livers4040047