Hepatoprotective Activity and Oxidative Stress Reduction of an Arctium tomentosum Mill. Root Extract in Mice with Experimentally Induced Hepatotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Preparation of the Extract
2.3. Quantification of Total Flavonoids (TFCs) and Phenolic Acids (TPAs) Contents by Spectrophotometric Methods
2.3.1. Determination of Total Flavonoid Content (TFC) by Spectrophotometry
2.3.2. Determination of Total Phenolic Acids (TPAs) Content by Spectrophotometry
2.4. HPLC/DAD/ESI Analysis
2.5. Determination of Antioxidant Capacity of the A. tomentosum Root Extract
2.5.1. DPPH Radical Scavenging Activity Assay
2.5.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.6. Animal Studies
2.7. Oxidative Stress Markers and Plasma Biochemistry
2.8. Histology
2.9. Statistical Analysis
3. Results
3.1. Quantification of the TFC and TPA and Evaluation of the Antioxidant Activity: In Vitro Assays
3.2. Hepatoprotective Activity: Animal Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Bădărau, A.S.; Swamy, M.K.; Shaw, S.; Maggi, F.; da Silva, L.E.; López, V.; Yeung, A.W.K.; Mocan, A.; Atanasov, A.G. Arctium Species Secondary Metabolites Chemodiversity and Bioactivities. Front. Plant Sci. 2019, 10, 834. [Google Scholar] [CrossRef] [PubMed]
- Ydyrys, A. An Overview of Medical Uses and Chemical Composition of Arctium tomentosum Mill. Eng. Sci. 2023, 26, 984. [Google Scholar] [CrossRef]
- De Souza, A.R.C.; de Oliveira, T.L.; Fontana, P.D.; Carneiro, M.C.; Corazza, M.L.; de Messias Reason, I.J.; Bavia, L. Phytochemicals and Biological Activities of Burdock (Arctium lappa L.) Extracts: A Review. Chem. Biodivers. 2022, 19, e202200615. [Google Scholar] [CrossRef] [PubMed]
- Yosri, N.; Alsharif, S.M.; Xiao, J.; Musharraf, S.G.; Zhao, C.; Saeed, A.; Gao, R.; Said, N.S.; Di Minno, A.; Daglia, M.; et al. Arctium lappa (Burdock): Insights from Ethnopharmacology Potential, Chemical Constituents, Clinical Studies, Pharmacological Utility and Nanomedicine. Biomed. Pharmacother. 2023, 158, 114104. [Google Scholar] [CrossRef]
- Committee on Herbal Medicinal Products (HMPC). Community Herbal Monograph on Arctium lappa L., Radix. Eur. Med. Agency 2010, 1–6. [Google Scholar]
- Ge, L.; Liu, F.; Hu, Y.; Zhou, X. Qualitative and Quantitative Analysis of Arctiin and Arctigenin in Arctium tomentosum Mill. by High-Performance Thin-Layer Chromatography. JPC J. Planar Chromatogr. Mod. TLC 2020, 33, 19–26. [Google Scholar] [CrossRef]
- Kolomiets, N.E.; Boev, R.S.; Zhalnina, L.V.; Hasan, A.A.K. Chromatographic and Spectral Study of Arctium lappa and Arctium tomentosum Fructus Cultivated in Altai. Khimiya Rastit. Syr’ya 2024, 1, 148–155. [Google Scholar] [CrossRef]
- Malaník, M.; Farková, V.; Křížová, J.; Kresová, A.; Šmejkal, K.; Kašparovský, T.; Dadáková, K. Comparison of Metabolic Profiles of Fruits of Arctium lappa, Arctium minus, and Arctium tomentosum. Plant Foods Hum. Nutr. 2024, 79, 497–502. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Ge, L.; Gong, H.; Tian, S. Determination of Arctiin and Arctigenin Contents in Arctium tomentosum Mill. by HPLC Method. E-J. Chem. 2011, 8 (Suppl. S1), 372–377. [Google Scholar] [CrossRef]
- Skowronska, W.; Granica, S.; Dziedzic, M.; Kurkowiak, J.; Ziaja, M.; Bazylko, A. Arctium lappa and Arctium tomentosum, Sources of Arctii Radix: Comparison of Anti-Lipoxygenase and Antioxidant Activity as Well as the Chemical Composition of Extracts from Aerial Parts and from Roots. Plants 2021, 10, 78. [Google Scholar] [CrossRef]
- Strawa, J.; Wajs-Bonikowska, A.; Jakimiuk, K.; Waluk, M.; Poslednik, M.; Nazaruk, J.; Tomczyk, M. Phytochemical Examination of Woolly Burdock Arctium tomentosum Leaves and Flower Heads. Chem. Nat. Compd. 2020, 56, 345–347. [Google Scholar] [CrossRef]
- Aitynova, A.E.; Ibragimova, N.A.; Shalakhmetova, T.M.; Gapurkhaeva, T.E.; Krasnoshtanov, A.V.; Kenesheva, S.T. Antimicrobial Effect of Extract from Root of Arctium tomentosum Mill. (Woolly Burdock) against Several Reference Strains. Int. J. Biol. Chem. 2022, 15, 10–17. [Google Scholar] [CrossRef]
- Aitynova, A.; Ibragimova, N.; Shalakhmetova, T.; Nussirbekova, A.; Ponomareva, G. Oral Administration of Arctium tomentosum Mill. CO2-Extract Alleviates the Diet Induced Metabolic Disorder in Mice. BIO Web Conf. 2024, 100, 01003. [Google Scholar] [CrossRef]
- Aitynova, A.; Ibragimova, N.; Shalakhmetova, T.; Vassilyeva, K.; Issayeva, D. Cytotoxicity, Acute, and Sub-Chronic Toxicity of the Arctium tomentosum Mill. Root Extract. J. Appl. Biol. Biotechnol. 2024, 12, 67–73. [Google Scholar] [CrossRef]
- González-Ponce, H.A.; Rincón-Sánchez, A.R.; Jaramillo-Juárez, F.; Moshage, H. Natural Dietary Pigments: Potential Mediators Against Hepatic Damage Induced by over-the-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs. Nutrients 2018, 10, 117. [Google Scholar] [CrossRef]
- Almazroo, O.A.; Miah, M.K.; Venkataramanan, R. Drug Metabolism in the Liver. Clin. Liver Dis. 2017, 21, 1–20. [Google Scholar] [CrossRef]
- Koc, S.; Isgor, B.S.; Isgor, Y.G.; Shomali Moghaddam, N.; Yildirim, O. The Potential Medicinal Value of Plants from Asteraceae Family with Antioxidant Defense Enzymes as Biological Targets. Pharm. Biol. 2015, 53, 746–751. [Google Scholar] [CrossRef]
- Guan, Y.S.; He, Q. Plants Consumption and Liver Health. Evid.-Based Complement. Altern. Med. 2015, 2015, 824185. [Google Scholar] [CrossRef]
- Seeff, L.B.; Bonkovsky, H.L.; Navarro, V.J.; Wang, G. Herbal Products and the Liver: A Review of Adverse Effects and Mechanisms. Gastroenterology 2015, 148, 517–532.e3. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Vergani, L.; Vecchione, G.; Baldini, F.; Grasselli, E.; Voci, A.; Portincasa, P.; Ferrari, P.F.; Aliakbarian, B.; Casazza, A.A.; Perego, P. Polyphenolic Extract Attenuates Fatty Acid-Induced Steatosis and Oxidative Stress in Hepatic and Endothelial Cells. Eur. J. Nutr. 2018, 57, 1793–1805. [Google Scholar] [CrossRef] [PubMed]
- Casas-Grajales, S. Antioxidants in Liver Health. World J. Gastrointest. Pharmacol. Ther. 2015, 6, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Das Talukdar, A.; Nath, R.; Sarker, S.D.; Nahar, L.; Sahu, J.; Choudhury, M.D. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front. Pharmacol. 2019, 10, 509. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Duan, L.; Akakpo, J.; Jaeschke, H. Mitochondrial Dysfunction as a Mechanism of Drug-Induced Hepatotoxicity: Current Understanding and Future Perspectives. J. Clin. Transl. Res. 2018, 4, 75–100. [Google Scholar] [CrossRef]
- İlgün, S.; Karatoprak, G.Ş.; Polat, D.Ç.; Şafak, E.K.; Yıldız, G.; Küpeli Akkol, E.; Sobarzo-Sánchez, E. Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants 2022, 11, 1852. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae—An Update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Edris, A.E.; Wawrzyniak, P.; Kalemba, D. Subcritical CO2 Extraction of a Volatile Oil-Rich Fraction from the Seeds of Nigella sativa for Potential Pharmaceutical and Nutraceutical Applications. J. Essent. Oil Res. 2018, 30, 84–91. [Google Scholar] [CrossRef]
- Chia, S.L.; Boo, H.C.; Muhamad, K.; Sulaiman, R.; Umanan, F.; Chong, G.H. Effect of Subcritical Carbon Dioxide Extraction and Bran Stabilization Methods on Rice Bran Oil. JAOCS J. Am. Oil Chem. Soc. 2015, 92, 393–402. [Google Scholar] [CrossRef]
- Larson, E.C.; Pond, C.D.; Rai, P.P.; Matainaho, T.K.; Piskaut, P.; Franklin, M.R.; Barrows, L.R. Traditional Preparations and Methanol Extracts of Medicinal Plants from Papua New Guinea Exhibit Similar Cytochrome P450 Inhibition. Evid.-Based Complement. Altern. Med. 2016, 2016, 7869710. [Google Scholar] [CrossRef]
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunus, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and Challenges in Green Extraction Techniques for Indonesian Natural Products: A Review. S. Afr. J. Chem. Eng. 2023, 46, 88–98. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Kotsou, K.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Sustainable Valorization of Sour Cherry (Prunus cerasus) By-Products: Extraction of Antioxidant Compounds. Sustainability 2024, 16, 32. [Google Scholar] [CrossRef]
- Hirondart, M.; Rombaut, N.; Fabiano-Tixier, A.S.; Bily, A.; Chemat, F. Comparison between Pressurized Liquid Extraction and Conventional Soxhlet Extraction for Rosemary Antioxidants, Yield, Composition, and Environmental Footprint. Foods 2020, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Afraz, M.T.; Xu, X.; Adil, M.; Manzoor, M.F.; Zeng, X.; Han, Z.; Aadil, R.M. Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods 2023, 12, 2417. [Google Scholar] [CrossRef]
- Hrncic, M.K.; Cör, D.; Verboten, M.T.; Knez, Z. Application of Supercritical and Subcritical Fluids in Food Processing. Food Qual. Saf. 2018, 2, 59–67. [Google Scholar] [CrossRef]
- Stefanov, S.M.; Fetzer, D.E.L.; Custódio de Souza, A.R.; Corazza, M.L.; Hamerski, F.; Yankov, D.S.; Stateva, R.P. Valorization by Compressed Fluids of Arctium Lappa Seeds and Roots as a Sustainable Source of Valuable Compounds. J. CO2 Util. 2022, 56, 101821. [Google Scholar] [CrossRef]
- Păltinean, R.; Ielciu, I.; Hanganu, D.; Niculae, M.; Pall, E.; Angenot, L.; Tits, M.; Mocan, A.; Babotă, M.; Frumuzachi, O.; et al. Biological Activities of Some Isoquinoline Alkaloids from Fumaria schleicheri Soy. Will. Plants 2022, 11, 1202. [Google Scholar] [CrossRef]
- Ielciu, I.; Vlase, L.; Frédérich, M.; Hanganu, D.; Păltinean, R.; Cieckiewicz, E.; Olah, N.-K.; Gheldiu, A.-M.; Crişan, G. Polyphenolic Profile and Biological Activities of the Leaves and Aerial Parts of Echinocystis lobata (Michx.) Torr. et A. Gray (Cucurbitaceae). Farmacia 2017, 65, 179–183. [Google Scholar]
- Ielciu, I.; Hanganu, D.; Păltinean, R.; Vlase, L.; Frédérich, M.; Gheldiu, A.-M.; Benedec, D.; Crişan, G. Antioxidant Capacity and Polyphenolic Content of the Echinocystis lobata (Michx.) Torr. et A.Gray Flowers. Pak. J. Pharm. Sci. 2018, 31 (Suppl. S2), 677–683. [Google Scholar]
- Ielciu, I.; Niculae, M.; Pall, E.; Barbălată, C.; Tomuţă, I.; Olah, N.K.; Burtescu, R.F.; Benedec, D.; Oniga, I.; Hanganu, D. Antiproliferative and Antimicrobial Effects of Rosmarinus officinalis L. Loaded Liposomes. Molecules 2022, 27, 3988. [Google Scholar] [CrossRef]
- Sevastre-Berghian, A.C.; Ielciu, I.; Mitre, A.O.; Filip, G.A.; Oniga, I.; Vlase, L.; Benedec, D.; Gheldiu, A.-M.; Toma, V.A.; Mihart, B.; et al. Targeting Oxidative Stress Reduction and Inhibition of HDAC1, MECP2, and NF-KB Pathways in Rats with Experimentally Induced Hyperglycemia by Administration of Thymus marshallianus Willd. Extracts. Front. Pharmacol. 2020, 11, 581470. [Google Scholar] [CrossRef] [PubMed]
- Buza, V.; Niculae, M.; Hanganu, D.; Pall, E.; Burtescu, R.F.; Olah, N.K.; Matei-Lațiu, M.C.; Vlasiuc, I.; Iozon, I.; Szakacs, A.R.; et al. Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules 2022, 27, 3560. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in Vivo and in Vitro Methods Evaluation of Antioxidant Activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef]
- Aleya, A.; Mihok, E.; Pecsenye, B.; Jolji, M.; Kertész, A.; Bársony, P.; Vígh, S.; Cziaky, Z.; Máthé, A.B.; Burtescu, R.F.; et al. Phytoconstituent Profiles Associated with Relevant Antioxidant Potential and Variable Nutritive Effects of the Olive, Sweet Almond, and Black Mulberry Gemmotherapy Extracts. Antioxidants 2023, 12, 1717. [Google Scholar] [CrossRef]
- Ielciu, I.; Sevastre, B.; Olah, N.-K.; Turdean, A.; Chişe, E.; Marica, R.; Oniga, I.; Uifălean, A.; Sevastre-Berghian, A.C.; Niculae, M.; et al. Evaluation of Hepatoprotective Activity and Oxidative Stress Reduction of Rosmarinus officinalis L. Shoots Tincture in Rats with Experimentally Induced Hepatotoxicity. Molecules 2021, 26, 1737. [Google Scholar] [CrossRef]
- Bruccoleri, A.; Gallucci, R.; Germolec, D.R.; Blackshear, P.; Simeonova, P.; Thurman, R.G.; Luster, M.I. Induction of Early-Immediate Genes by Tumor Necrosis Factor α Contribute to Liver Repair Following Chemical-Induced Hepatotoxicity. Hepatology 1997, 25, 133–141. [Google Scholar] [CrossRef]
- De Souza, A.R.C.; Guedes, A.R.; Folador Rodriguez, J.M.; Bombardelli, M.C.M.; Corazza, M.L. Extraction of Arctium lappa Leaves Using Supercritical CO2+ ethanol: Kinetics, Chemical Composition, and Bioactivity Assessments. J. Supercrit. Fluids 2018, 140, 137–146. [Google Scholar] [CrossRef]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Cheng, K.; Niu, J.; Zhang, J.; Qiao, Y.; Dong, G.; Guo, R.; Zheng, X.; Song, Z.; Huang, J.; Wang, J.; et al. Hepatoprotective Effects of Chlorogenic Acid on Mice Exposed to Aflatoxin B1: Modulation of Oxidative Stress and Inflammation. Toxicon 2023, 231, 107177. [Google Scholar] [CrossRef]
- Hsu, Y.W.; Chen, Y.Y.; Tsai, C.F. Protective Effects of Chlorogenic Acid against Carbon Tetrachloride-Induced Hepatotoxicity in Mice. Processes 2022, 10, 31. [Google Scholar] [CrossRef]
- Zou, L.; Chen, S.; Li, L.; Wu, T. The Protective Effect of Hyperoside on Carbon Tetrachloride-Induced Chronic Liver Fibrosis in Mice via Upregulation of Nrf2. Exp. Toxicol. Pathol. 2017, 69, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, D.-W.; Yun, N.; Choi, J.-S.; Islam, N.M.; Kim, Y.-S.; Lee, S.-M. Protective Effects of Hyperoside against CarbonTetrachloride-Induced Liver Damage in Mice. J. Nat. Prod. 2011, 74, 1055–1060. [Google Scholar] [CrossRef]
- Domitrović, R.; Rashed, K.; Cvijanović, O.; Vladimir-Knežević, S.; Škoda, M.; Višnić, A. Myricitrin Exhibits Antioxidant, Anti-Inflammatory and Antifibrotic Activity in Carbon Tetrachloride-Intoxicated Mice. Chem. Biol. Interact. 2015, 230, 21–29. [Google Scholar] [CrossRef]
- Qiusheng, Z.; Xiling, S.; Xubo; Gang, L.; Meng, S.; Changhai, W. Protective Effects of Luteolin-7-Glucoside against Liver Injury Caused by Carbon Tetrachloride in Rats. Pharmazie 2004, 59, 286–289. [Google Scholar]
- Li, L.; Lan, Y.; Wang, F.; Gao, T. Linarin Protects Against CCl4-Induced Acute Liver Injury via Activating Autophagy and Inhibiting the Inflammatory Response: Involving the TLR4/MAPK/Nrf2 Pathway. Drug Des. Dev. Ther. 2023, 17, 3589–3604. [Google Scholar] [CrossRef]
- Dimitrios, B. Sources of Natural Phenolic Antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Soares, A.K.N.; De Sousa, D.P. Overview of the Role of Vanillin on Redox Status and Cancer Development. Oxid. Med. Cell. Longev. 2016, 2016, 9734816. [Google Scholar] [CrossRef]
- Kalra, A.; Yetiskul, E.; Wehrle, C.J.; Tuma, F. Physiology, Liver; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Saran, A.R.; Dave, S.; Zarrinpar, A. Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology 2020, 158, 1948–1966.e1. [Google Scholar] [CrossRef]
- Shetty, A.; Hsu, J.W.; Manka, P.P.; Syn, W.K. Role of the Circadian Clock in the Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Dig. Dis. Sci. 2018, 63, 3187–3206. [Google Scholar] [CrossRef]
- Mirmiran, P.; Amirhamidi, Z.; Ejtahed, H.S.; Bahadoran, Z.; Azizi, F. Relationship between Diet and Non-Alcoholic Fatty Liver Disease: A Review Article. Iran. J. Public Health 2017, 46, 1007–1017. [Google Scholar]
- Konieczna, J.; Fiol, M.; Colom, A.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Soria-Florido, M.T.; Martínez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. Does Consumption of Ultra-Processed Foods Matter for Liver Health? Prospective Analysis among Older Adults with Metabolic Syndrome. Nutrients 2022, 14, 4142. [Google Scholar] [CrossRef] [PubMed]
- Johra, F.T.; Hossain, S.; Jain, P.; Bristy, A.T.; Emran, T.; Ahmed, R.; Sharker, S.M.; Bepari, A.K.; Reza, H.M. Amelioration of CCl4-Induced Oxidative Stress and Hepatotoxicity by Ganoderma lucidum in Long Evans Rats. Sci. Rep. 2023, 13, 9909. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Methanol | 0.1% Formic Acid in Water |
---|---|---|
0.00 | 5 | 95 |
3.00 | 25 | 75 |
6.00 | 25 | 75 |
9.00 | 37 | 63 |
13.00 | 37 | 63 |
18.00 | 54 | 46 |
22.00 | 54 | 46 |
26.00 | 95 | 5 |
29.00 | 95 | 5 |
30.00 | 5 | 95 |
36.00 | 5 | 95 |
Phenolic Metabolites | Retention Time (min) | m/z, and Main Transition | MRM | Other Transitions |
---|---|---|---|---|
Chlorogenic acid | 12.00 | 353.05 > 191.0 | Negative | 353.05 > 127.0 353.05 > 93.0 353.05 > 85.0 |
Hyperoside | 20.23 | 463.1 > 300.1 | Negative | 463.1 > 301.0 |
Luteolin-7-O-glucoside | 19.78 | 447.0 > 284.9 | Negative | |
Myricetin | 22.31 | 317.0 > 151.0 | Negative | 317.0 > 137.0 |
Acacetin 7-O-glucoside | 19.83 | 447.1 > 285.0 | Negative | |
4-Hydroxy-3-methoxybenzaldehyde | 15.18 | 151.0 > 108.0 | Negative | 151.0 > 136.0 151.0 > 123.0 151.0 > 92.0 |
Phenolic Metabolites | Concentration Range (µg/mL) | Calibration Curve Equation | Correlation Factor | Detection Limit (μg/mL) | Quantification Limit (μg/mL) |
---|---|---|---|---|---|
Chlorogenic acid | 14.000–140.000 | A = 99,441.2 × C + 892,474 | 0.9954 | 17.95 | 35.90 |
Hyperoside | 1.070–10.700 | A = 4.61 × 106 × C + 2.91 × 106 | 0.9961 | 1.26 | 2.52 |
Luteolin-7-O-glucoside | 0.285–2.850 | A = 2.51 × 106 × C + 377,486 | 0.9855 | 0.30 | 0.60 |
Myricetin | 0.100–1.000 | A = 2.08 × 106 × C + 144,510 | 0.9616 | 0.14 | 0.28 |
Acacetin 7-O-glucoside | 3.100–31.000 | A = 5880.86 × C + 28,495.1 | 0.9901 | 9.69 | 19.38 |
4-Hydroxy-3-methoxybenzaldehyde | 5.500–55.000 | A = 74,197.4 × C + 40,104.4 | 0.9936 | 1.08 | 2.16 |
Sample | TFC (mg REs/mL) | TPA (mg CAEs/mL) | DPPH (IC50 µg/mL) | FRAP (µM TE/100 mL) |
---|---|---|---|---|
A. tomentosum subcritical fluid-assisted root extract | 6.51 ± 0.02 * | 0.96 ± 0.01 | 35.00 ± 0.31 * | 572 ± 2.6 |
Trolox | - | - | 11.86 ± 0.02 | - |
Phenolic Compounds | Concentration (mg/mL) |
---|---|
Chlorogenic acid | 17.20 ± 0.65 |
Hyperoside | 0.36 ± 0.04 |
Luteolin-7-O-glucoside | 0.21 ± 0.01 |
Myricetin | 0.23 ± 0.00 |
Acacetin 7-O-glucoside | 56.80 ± 1.66 |
4-Hydroxy-3-methoxybenzaldehyde | 0.43 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aitynova, A.; Sevastre, B.; Ielciu, I.; Hanganu, D.; Olah, N.-K.; Ibragimova, N.; Shalakhmetova, T.; Benedec, D.; Lyu, M.; Krasnoshtanov, A.; et al. Hepatoprotective Activity and Oxidative Stress Reduction of an Arctium tomentosum Mill. Root Extract in Mice with Experimentally Induced Hepatotoxicity. Livers 2024, 4, 696-710. https://doi.org/10.3390/livers4040048
Aitynova A, Sevastre B, Ielciu I, Hanganu D, Olah N-K, Ibragimova N, Shalakhmetova T, Benedec D, Lyu M, Krasnoshtanov A, et al. Hepatoprotective Activity and Oxidative Stress Reduction of an Arctium tomentosum Mill. Root Extract in Mice with Experimentally Induced Hepatotoxicity. Livers. 2024; 4(4):696-710. https://doi.org/10.3390/livers4040048
Chicago/Turabian StyleAitynova, Arailym, Bogdan Sevastre, Irina Ielciu, Daniela Hanganu, Neli-Kinga Olah, Nailya Ibragimova, Tamara Shalakhmetova, Daniela Benedec, Marina Lyu, Arkadiy Krasnoshtanov, and et al. 2024. "Hepatoprotective Activity and Oxidative Stress Reduction of an Arctium tomentosum Mill. Root Extract in Mice with Experimentally Induced Hepatotoxicity" Livers 4, no. 4: 696-710. https://doi.org/10.3390/livers4040048
APA StyleAitynova, A., Sevastre, B., Ielciu, I., Hanganu, D., Olah, N. -K., Ibragimova, N., Shalakhmetova, T., Benedec, D., Lyu, M., Krasnoshtanov, A., & Gapurkhaeva, T. (2024). Hepatoprotective Activity and Oxidative Stress Reduction of an Arctium tomentosum Mill. Root Extract in Mice with Experimentally Induced Hepatotoxicity. Livers, 4(4), 696-710. https://doi.org/10.3390/livers4040048