Acetylcysteine Treatment of Acetaminophen Overdose: Foundational and Clinical Development
Abstract
:1. Clinical Application of Acetaminophen (Paracetamol) for Fever and Pain
2. Mechanisms of Toxicity of Acetaminophen (Paracetamol)
3. Development of n-Acetylcysteine (NAC) Treatment of Acetaminophen Overdose
- (1)
- Normal human liver has approximately 4 mmoles of glutathione (GSH) per liter [10].
- (2)
- Using the 1974 FDA standard 70 kg patient:
- The human liver in a 70 kg patient is about 1.5 L so ≅ 6 mmoles of GSH.
- Hepatic necrosis was reported in mice when there is 70% depletion of GSH.
- Seventy percent (0.70) × 6 mmoles = 4.2 mmoles depletion in a 70 kg patient to produce necrosis.
- (3)
- APAP is 151.2 g/mole (151.2 mg/mmol)
- NAPQI production is 4% of an APAP absorbed dose.
- The measurement of 4.2 mmoles GSH is ≅ to 4.2 mmoles of NAPQI so roughly equivalent
- Four percent (0.04) × APAP dose = the amount of NAPQI produced.
- Solving the toxic dose of APAP to produce a 70% depletion of GSH:
- A measurement of 4.2 mmoles NAPQI/0.04 ≅ 105 mmols APAP.
- A measurement of 105 mmoles APAP × 151.2 mg/mmol = 15,876 mg APAP.
- So, an absorbed dose of 15.9 g of APAP in a 70 kg human would be sufficient to deplete GSH by 70% and produce necrosis.
- Four percent of 15,876 mg of APAP would produce 635 mg of NAPQI.
- a.
- The 1.5 L liver contains ≅ 6 mmol of GSH.
- b.
- Acetylcysteine is 163.2 g per mole or 163.2 mg/mmol and 1 g is 6.1 mmol.
- c.
- Acetaminophen is 151.2 g per mole or 151.2 mg/mmol and 1 g is 6.6 mmol.
- d.
- Acetylcysteine and acetaminophen are roughly equivalent on a molar basis.
- e.
- GSH turnover was estimated to be 1.5 mmol/h and replacing 25% of the 4.2 mmol depletion was ≅1 mmol which resulted in a balance of ~2.5 mmol/h replacement per h.
- f.
- Dividing 2.5 mmol/h by the 70 kg patient = 0.036 mmol/kg/hr.
- g.
- A measurement of 0.036 mmol/kg × 163.2 mg/mmol acetylcysteine = 5.88 mg/kg/hr rounded to a 6 mg/kg/hr dose of acetylcysteine to replace the GSH turnover and binding to NAPQI.
- (1)
- Initial protocol from the calculations gives the following:
- Administering 6 mg/kg/hr of acetylcysteine on a 4 h schedule resulted in 24 mg/kg/4 h.
- An initial loading dose of twice the maintenance dose was 48 mg/kg.
- The initial protocol was a loading dose followed by 11 maintenance doses over 48 h. However, this was changed to 60 h and 14 doses when in a correction to the first submission to be consistent with a 12 h half-life of APAP.
- (2)
- We were fully aware that many patients consumed an overdose of greater than 15.9 g. Following several discussions with the FDA, the second resubmission of the protocol contained the following dosing methodology to account for higher doses and adding empirical safety factors, along with other changes:
- Loading dose of 140 mg/kg
- Seventeen maintenance doses every four hours of 70 mg/kg
- Acetylcysteine was administered for 72 h with a total dose of 1330 mg/kg.
4. Acetylcysteine Clinical Studies in Acetaminophen Overdose
5. Acetylcysteine in Pregnancy
6. Acetylcysteine Failure in Renal Toxicity
7. Acetylcysteine Administration, Stopping Criteria and Further Risk Analysis
- Acetaminophen concentration <10 μg/mL (mg/L);
- International normalized ratio (INR) <2.0;
- ALT/AST normal for patient, or if elevated have decreased from peak (25–50%);
- Patient is clinically well.
8. Acetylcysteine Adjunctive Treatment with Fomepizole and Other Therapies
- ▪
- Calmangafodipir is a superoxide dismutase “mimetic” (manganese-dependent superoxide dismutase, Mn-SOD) 1. SOD is required in the cellular defense of reactive oxygen species and interferes with the formation of peroxynitrite, increases nitrotyrosine formation and hepatic toxicity. Mn-SOD mimetics, e.g., Mito-Tempo (mitochondria-targeted antioxidant) can enter mitochondria. Increasing Mn-SOD capacity can be effective in treating APAP toxicity. A phase IIb/III Albatross Trial of calmangafodipir for acetaminophen toxicity was to commence Q1 2024 but has not begun as of the writing of this article.
- ▪
- Nrf2 binds to the ARE (antioxidant response element) and induces transcription of a large number of genes which all have protective roles in the APAP hepatotoxicity model. However, Nrf2 is activated by APAP and there may be no further benefit from further activation.
- ▪
- Thrombopoietin Mimetic Peptide1 (PEG-TPOm) JNJ-26366821. PEG-TPO treatment appears to be beneficial when administered at 24 h after APAP overdose when NAC is ineffective. PEG-TPO arrests the progression of acetaminophen overdose-induced liver injury (AILI) and accelerates the onset of the proliferative response essential for liver recovery. Distinct from 4-MP which prevents injury but does not promote hepatocyte proliferation and liver recovery, PEG-TPO is a potential novel therapeutic for the enhancement of liver recovery after AILI1.
- ▪
- Adenosine A2B receptor activators such as BAY 60-6583 decreased necrosis and enhanced infiltration of reparative macrophages when NAC would be ineffective. Clinical trials in cancer patients have begun.
- ▪
- Whartons Jelly Mesenchymal Stem Cell (WJMSC) protected against liver injury at 6 h by preserving mitochondrial function despite JNK activation and its mitochondrial translocation accompanied by enhanced infiltration of macrophages with the reparative anti-inflammatory phenotype by 24 h. Clinical trials have begun.
- ▪
- Lipid-nanoparticle-encapsulated mRNA of HGF (human grown factor) and EGF epidermal growth factor have been shown to be effective in the mouse model and may be further investigated.
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brodie, B.B.; Axelrod, J. The estimation of acetanilide and its metabolic products, aniline, N-acetyl p-aminophenol and p-amino-phenol, free and total conjugated, in biological fluids and tissues. J. Pharmacol. Exp. Ther. 1948, 94, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Davidson, D.G.; Eastham, W.N. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 1966, 2, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.S.; Prescott, L.F. Liver damage and impaired glucose tolerance after paracetamol overdosage. Br. Med. J. 1966, 2, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.F.; Roscoe, P.; Wright, N.; Brown, S.S. Plasma-paracetamol half-life and hepatic necrosis in patients with paracetamol overdosage. Lancet 1971, 1, 519–522. [Google Scholar] [CrossRef]
- Proudfoot, A.T.; Wright, N. Acute paracetamol poisoning. Br. Med. J. 1970, 3, 557–558. [Google Scholar] [CrossRef]
- Jollow, D.J.; Mitchell, J.R.; Potter, W.Z.; Davis, D.C.; Gillette, J.R.; Brodie, B.B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 1973, 187, 195–202. [Google Scholar] [CrossRef]
- Jollow, D.; Thorgeirsson, S.S.; Potter, W.Z.; Hashimoto, M.; Mitchell, J.R. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 1974, 12, 251–271. [Google Scholar] [CrossRef]
- Mitchell, J.R.; Jollow, D.J.; Potter, W.Z.; Davis, D.C.; Gillette, J.R.; Brodie, B.B. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 1973, 187, 185–194. [Google Scholar]
- Mitchell, J.R.; Jollow, D.J.; Potter, W.Z.; Gillette, J.R.; Brodie, B.B. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 1973, 187, 211–217. [Google Scholar] [CrossRef]
- Mitchell, J.R.; Thorgeirsson, S.S.; Potter, W.Z.; Jollow, D.J.; Keiser, H. Acetaminophen-induced hepatic injury: Protective role of glutathione in man and rationale for therapy. Clin. Pharmacol. Ther. 1974, 16, 676–684. [Google Scholar] [CrossRef]
- Potter, W.Z.; Davis, D.C.; Mitchell, J.R.; Jollow, D.J.; Gillette, J.R.; Brodie, B.B. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J. Pharmacol. Exp. Ther. 1973, 187, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Potter, W.Z.; Thorgeirsson, S.S.; Jollow, D.J.; Mitchell, J.R. Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology 1974, 12, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Jollow, D. Acetaminophen-Induced Hepatic Necrosis: A Reminiscence. Drug Metab. Dispos. 2023, 52, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Calder, I.C.; Creek, M.J.; Williams, P.J. N-hydroxyphenacetinn as a precursor of 3-substituted 4-hydroxyacetanilide metabolites of phenacetin. Chem. Biol. Interact. 1974, 8, 87–90. [Google Scholar] [CrossRef]
- Holtzman, J.L.; Gillette, J.R.; Milne, G.W. The incorporation of 18-O into naphthalene in the enzymatic formation of 1,2-dihydronaphthalene-1,2-diol. J. Biol. Chem. 1967, 242, 4386–4387. [Google Scholar] [CrossRef]
- Dahlin, D.C.; Nelson, S.D. Synthesis, decomposition kinetics, and preliminary toxicological studies of pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen. J. Med. Chem. 1982, 25, 885–886. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, D.C.; Miwa, G.T.; Lu, A.Y.; Nelson, S.D. N-acetyl-p-benzoquinone imine: A cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. USA 1984, 81, 1327–1331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaeschke, H.; Ramachandran, A. The multiple mechanisms and modes of cell death after acetaminophen overdose. Explor. Dig. Dis. 2025, 4, 100569. [Google Scholar] [CrossRef]
- Bateman, D.N.; Dart, R.C.; Dear, J.W.; Prescott, L.F.; Rumack, B.H. Fifty years of paracetamol (acetaminophen) poisoning: The development of risk assessment and treatment 1973–2023 with particular focus on contributions published from Edinburgh and Denver. Clin. Toxicol. 2023, 61, 1020–1031. [Google Scholar] [CrossRef]
- Prescott, L.F. Paracetamol (acetaminophen) poisoning: The early years. Br. J. Clin. Pharmacol. 2024, 90, 127–134. [Google Scholar] [CrossRef]
- Rumack, B.H.; Matthew, H. Acetaminophen poisoning and toxicity. Pediatrics 1975, 55, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.F.; Swainson, C.P.; Forrest, A.R.W.; Newton, R.W.; Wright, N.; Matthew, H. Successful treatment of severe paracetamol overdosage with cysteamine. Lancet 1974, 1, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Piperno, E.; Berssenbruegge, D.A. Reversal of experimental paracetamol toxicosis with N-acetylcysteine. Lancet 1976, 2, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Piperno, E.; Mosher, A.H.; Berssenbruegge, D.A.; Winkler, J.D.; Smith, R.B. Pathophysiology of acetaminophen overdosage toxicity: Implications for management. Pediatrics 1978, 62 Pt 2 (Suppl. S5), 880–889. [Google Scholar]
- Meredith, T.J.; Goulding, R. Paracetamol. Postgrad. Med. J. 1980, 56, 459–473. [Google Scholar] [CrossRef]
- Smilkstein, M.J.; Knapp, G.L.; Kulig, K.W.; Rumack, B.H. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985) [see comments]. N. Engl. J. Med. 1988, 319, 1557–1562. [Google Scholar] [CrossRef]
- Hughes, R.D.; Trewby, P.; Williams, R. Letter: Cysteamine for paracetamol poisoning. Lancet 1976, 1, 536. [Google Scholar]
- Koch-Weser, J. Drug therapy. Acetaminophen. N. Engl. J. Med. 1976, 295, 1297–1300. [Google Scholar] [CrossRef]
- Prescott, L.F.; Matthew, H. Cysteamine for Paracetamol Overdosage. Lancet 1974, 303, 998. [Google Scholar] [CrossRef]
- Rumack, B.H.; Peterson, R.C.; Koch, G.G.; Amara, I.A. Acetaminophen overdose. 662 cases with evaluation of oral acetylcysteine treatment. Arch. Intern. Med. 1981, 141, 380–385. [Google Scholar] [CrossRef]
- Peterson, R.G.; Rumack, B.H. Treating acute acetaminophen poisoning with acetylcysteine. JAMA 1977, 237, 2406–2407. [Google Scholar] [CrossRef] [PubMed]
- Rumack, B.H.; Peterson, R.G. Acetaminophen overdose: Incidence, diagnosis, and management in 416 patients. Pediatrics 1978, 62 Pt 2 (Suppl. S5), 898–903. [Google Scholar] [CrossRef] [PubMed]
- Rumack, B.H.; Bateman, D.N. Acetaminophen and acetylcysteine dose and duration: Past, present and future. Clin. Toxicol. 2012, 50, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.F.; Illingworth, R.N.; Critchley, J.A.; Stewart, M.J.; Adam, R.D.; Proudfoot, A.T. Intravenous N-acetylcystine: The treatment of choice for paracetamol poisoning. Br. Med. J. 1979, 2, 1097–1100. [Google Scholar] [CrossRef]
- Bateman, D.N.; Dear, J.W.; Thanacoody, H.R.; Thomas, S.H.; Eddleston, M.; Sandilands, E.A.; Coyle, J.; Cooper, J.G.; Rodriguez, A.; Butcher, I.; et al. Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: A randomised controlled trial. Lancet 2014, 383, 697–704. [Google Scholar] [CrossRef]
- Pettie, J.M.; Caparrotta, T.M.; Hunter, R.W.; Morrison, E.E.; Wood, D.M.; Dargan, P.I.; Thanacoody, R.H.; Thomas, S.H.L.; Elamin, M.E.M.O.; Francis, B.; et al. Safety and Efficacy of the SNAP 12-hour Acetylcysteine Regimen for the Treatment of Paracetamol Overdose. EClinicalMedicine 2019, 11, 11–17. [Google Scholar] [CrossRef]
- Crome, P.; Volans, G.N.; Vale, J.A.; Widdop, B.; Goulding, R. Oral methionine in the treatment of severe paracetamol (Acetaminophen) overdose. Lancet 1976, 2, 829–830. [Google Scholar] [CrossRef]
- Vale, J.A.; Meredith, T.J.; Goulding, R. Treatment of acetaminophen poisoning. The use of oral methionine. Arch. Intern. Med. 1981, 141, 394–396. [Google Scholar] [CrossRef]
- Douglas, A.P.; Hamlyn, A.N.; James, O. Controlled trial of cysteamine in treatment of acute paracetamol (acetaminophen) poisoning. Lancet 1976, 1, 111–115. [Google Scholar] [CrossRef]
- Prescott, L.F.; Sutherland, G.R.; Park, J.; Smith, I.J.; Proudfoot, A.T. Cysteamine, methionine, and penicillamine in the treatment of paracetamol poisoning. Lancet 1976, 2, 109–113. [Google Scholar] [CrossRef]
- Peterson, R.G.; Rumack, B.H. Pharmacokinetics of acetaminophen in children. Pediatrics 1978, 62 Pt 2 (Suppl. S5), 877–879. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.P.; Roberts, R.J.; Fischer, L.J. Acetaminophen elimination kinetics in neonates, children, and adults. Clin. Pharmacol. Ther. 1976, 19, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Rumack, B.H. Acetaminophen overdose in young children. Treatment and effects of alcohol and other additional ingestants in 417 cases. Am. J. Dis. Child. 1984, 138, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Rumack, B.H. Acetaminophen hepatotoxicity: The first 35 years. J. Toxicol. Clin. Toxicol. 2002, 40, 3–20. [Google Scholar] [CrossRef]
- Yarema, M.C.; Johnson, D.W.; Berlin, R.J.; Sivilotti, M.L.; Nettel-Aguirre, A.; Brant, R.F.; Spyker, D.A.; Bailey, B.; Chalut, D.; Lee, J.S.; et al. Comparison of the 20-hour intravenous and 72-hour oral acetylcysteine protocols for the treatment of acute acetaminophen poisoning. Ann. Emerg. Med. 2009, 54, 606–614. [Google Scholar] [CrossRef]
- Cairney, D.G.; Beckwith, H.K.; Al-Hourani, K.; Eddleston, M.; Bateman, D.N.; Dear, J.W. Plasma paracetamol concentration at hospital presentation has a dose-dependent relationship with liver injury despite prompt treatment with intravenous acetylcysteine. Clin. Toxicol. 2016, 54, 405–410. [Google Scholar] [CrossRef]
- Hendrickson, R.G. What is the most appropriate dose of N-acetylcysteine after massive acetaminophen overdose? Clin. Toxicol. 2019, 57, 686–691. [Google Scholar] [CrossRef]
- Marks, D.J.; Dargan, P.I.; Archer, J.R.; Davies, C.L.; Dines, A.M.; Wood, D.M.; Greene, S.L. Outcomes from massive paracetamol overdose: A retrospective observational study. Br. J. Clin. Pharmacol. 2017, 83, 1263–1272. [Google Scholar] [CrossRef]
- Riggs, B.S.; Bronstein, A.C.; Kulig, K.; Archer, P.G.; Rumack, B.H. Acute acetaminophen overdose during pregnancy. Obstet. Gynecol. 1989, 74, 247–253. [Google Scholar]
- Horowitz, R.S.; Dart, R.C.; Jarvie, D.R.; Bearer, C.F.; Gupta, U. Placental transfer of N-acetylcysteine following human maternal acetaminophen toxicity. J. Toxicol. Clin. Toxicol. 1997, 35, 447–451. [Google Scholar] [CrossRef]
- North, D.S.; Peterson, R.G.; Krenzelok, E.P. Effect of activated charcoal administration on acetylcysteine serum levels in humans. Am. J. Hosp. Pharm. 1981, 38, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Akakpo, J.Y.; Ramachandran, A.; Rumack, B.H.; Wallace, D.P.; Jaeschke, H. Lack of mitochondrial Cyp2E1 drives acetaminophen-induced ER stress-mediated apoptosis in mouse and human kidneys: Inhibition by 4-methylpyrazole but not N-acetylcysteine. Toxicology 2023, 500, 153692. [Google Scholar] [CrossRef] [PubMed]
- Chiew, A.L.; Gluud, C.; Brok, J.; Buckley, N.A. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst. Rev. 2018, 2, CD003328. [Google Scholar] [CrossRef] [PubMed]
- Hoyte, C.; Dart, R.C. Transition to two-bag intravenous acetylcysteine for acetaminophen overdose: A poison center’s experience. Clin. Toxicol. 2019, 57, 217–218. [Google Scholar] [CrossRef]
- Johnson, M.T.; McCammon, C.A.; Mullins, M.E.; Halcomb, S.E. Evaluation of a simplified N-acetylcysteine dosing regimen for the treatment of acetaminophen toxicity. Ann. Pharmacother. 2011, 45, 713–720. [Google Scholar] [CrossRef]
- O’Callaghan, C.; Graudins, A.; Wong, A. A two-bag acetylcysteine regimen is associated with shorter delays and interruptions in the treatment of paracetamol overdose. Clin. Toxicol. 2022, 60, 319–323. [Google Scholar] [CrossRef]
- Sandilands, E.A.; Bateman, D.N. Adverse reactions associated with acetylcysteine. Clin. Toxicol. 2009, 47, 81–88. [Google Scholar] [CrossRef]
- Wong, A.; Heard, K.; Graudins, A.; Dart, R.; Sivilotti, M.L. Adducts Post Acetaminophen Overdose Treated with a 12-Hour vs 20-Hour Acetylcysteine Infusion. J. Med. Toxicol. 2020, 16, 188–194. [Google Scholar] [CrossRef]
- Wong, A.; Isbister, G.; McNulty, R.; Isoardi, K.; Harris, K.; Chiew, A.; Greene, S.; Gunja, N.; Buckley, N.; Page, C.; et al. Efficacy of a two bag acetylcysteine regimen to treat paracetamol overdose (2NAC study). EClinicalMedicine 2020, 20, 100288. [Google Scholar] [CrossRef]
- Wong, A.; McNulty, R.; Taylor, D.; Sivilotti, M.; Greene, S.; Gunja, N.; Koutsogiannis, Z.; Graudins, A. The NACSTOP Trial: A Multicenter, Cluster-Controlled Trial of Early Cessation of Acetylcysteine in Acetaminophen Overdose. Hepatology 2019, 69, 774–784. [Google Scholar] [CrossRef]
- Humphries, C.; Clarke, E.; Eddleston, M.; Gillings, M.; Irvine, S.; Keating, L.; Miell, A.; Milne, L.; Muir, L.; O’Brien, R.; et al. HiSNAP trial-a multicentre, randomised, open-label, blinded end point, safety and efficacy trial of conventional (300 mg/kg) versus higher doses of acetylcysteine (450 mg/kg and 600 mg/kg) in patients with paracetamol overdose in the UK: Study protocol. BMJ Open. 2025, 15, e097432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dart, R.C.; Rumack, B.H. Patient-tailored acetylcysteine administration. Ann. Emerg. Med. 2007, 50, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Akakpo, J.Y.; Jaeschke, M.W.; Ramachandran, A.; Curry, S.C.; Rumack, B.H.; Jaeschke, H. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch. Toxicol. 2021, 95, 3377–3391. [Google Scholar] [CrossRef] [PubMed]
- Dart, R.C.; Mullins, M.E.; Matoushek, T.; Ruha, A.M.; Burns, M.M.; Simone, K.; Beuhler, M.C.; Heard, K.J.; Mazer-Amirshahi, M.; Stork, C.M.; et al. Management of Acetaminophen Poisoning in the US and Canada: A Consensus Statement. JAMA Netw. Open 2023, 6, e2327739. [Google Scholar] [CrossRef]
- Wong, A.; Sivilotti, M.L.; Gunja, N.; McNulty, R.; Graudins, A. Accuracy of the paracetamol-aminotransferase product to predict hepatotoxicity in paracetamol overdose treated with a 2-bag acetylcysteine regimen. Clin. Toxicol. 2018, 56, 182–188. [Google Scholar] [CrossRef]
- Chomchai, S.; Chomchai, C.; Anusornsuwan, T. Acetaminophen psi parameter: A useful tool to quantify hepatotoxicity risk in acute acetaminophen overdose. Clin. Toxicol. 2011, 49, 664–667. [Google Scholar] [CrossRef]
- Sivilotti, M.L.; Yarema, M.C.; Juurlink, D.N.; Good, A.M.; Johnson, D.W. A risk quantification instrument for acute acetaminophen overdose patients treated with N-acetylcysteine. Ann. Emerg. Med. 2005, 46, 263–271. [Google Scholar] [CrossRef]
- Chomchai, S.; Mekavuthikul, P.; Phuditshinnapatra, J.; Chomchai, C. Augmenting the sensitivity for hepatotoxicity prediction in acute paracetamol overdose: Combining psi (psi) parameter and paracetamol concentration aminotransferase activity multiplication product. Clin. Toxicol. 2024, 62, 714–725. [Google Scholar] [CrossRef]
- Chomchai, S.; Mekavuthikul, P.; Phuditshinnapatra, J.; Chomchai, C. Sensitivity of dose-estimations for acute acetaminophen overdose in predicting hepatotoxicity risk using the Rumack-Matthew Nomogram. Pharmacol. Res. Perspect. 2022, 10, e00920. [Google Scholar] [CrossRef]
- Akakpo, J.Y.; Ramachandran, A.; Duan, L.; Schaich, M.A.; Jaeschke, M.W.; Freudenthal, B.D.; Ding, W.-X.; Rumack, B.H.; Jaeschke, H. Delayed Treatment With 4-Methylpyrazole Protects Against Acetaminophen Hepatotoxicity in Mice by Inhibition of c-Jun n-Terminal Kinase. Toxicol. Sci. 2019, 170, 57–68. [Google Scholar] [CrossRef]
- Link, S.L.; Rampon, G.; Osmon, S.; Scalzo, A.J.; Rumack, B.H. Fomepizole as an adjunct in acetylcysteine treated acetaminophen overdose patients: A case series. Clin. Toxicol. 2022, 60, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.R.; Fox, C.; Geib, A.J.; Murphy, C.; Kopec, K.; Kerns II, W.; Dulaney, A.; Beuhler, M.C. Fomepizole as an adjunctive treatment in severe acetaminophen ingestions: A case series. Clin. Toxicol. 2021, 59, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Rasamison, R.; Besson, H.; Berleur, M.P.; Schicchi, A.; Mégarbane, B. Analysis of fomepizole safety based on a 16-year post-marketing experience in France. Clin. Toxicol. 2020, 58, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Akakpo, J.Y.; Curry, S.C.; Rumack, B.H.; Jaeschke, H. Clinically relevant therapeutic approaches against acetaminophen hepatotoxicity and acute liver failure. Biochem. Pharmacol. 2024, 228, 116056. [Google Scholar] [CrossRef]
- Akakpo, J.Y.; Ramachandran, A.; Curry, S.C.; Rumack, B.H.; Jaeschke, H. Comparing N-acetylcysteine and 4-methylpyrazole as antidotes for acetaminophen overdose. Arch. Toxicol. 2022, 96, 453–465. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumack, B.H. Acetylcysteine Treatment of Acetaminophen Overdose: Foundational and Clinical Development. Livers 2025, 5, 20. https://doi.org/10.3390/livers5020020
Rumack BH. Acetylcysteine Treatment of Acetaminophen Overdose: Foundational and Clinical Development. Livers. 2025; 5(2):20. https://doi.org/10.3390/livers5020020
Chicago/Turabian StyleRumack, Barry H. 2025. "Acetylcysteine Treatment of Acetaminophen Overdose: Foundational and Clinical Development" Livers 5, no. 2: 20. https://doi.org/10.3390/livers5020020
APA StyleRumack, B. H. (2025). Acetylcysteine Treatment of Acetaminophen Overdose: Foundational and Clinical Development. Livers, 5(2), 20. https://doi.org/10.3390/livers5020020