RANTES, IP-10 and MCP-1 Profiles in Patients with Autoimmune Hepatitis (AIH) at Baseline and During Immunosuppressive Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Chemokines Determination
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. At Diagnosis
3.3. On Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Chemokines: Multiple levels of leukocyte migration control☆. Trends Immunol. 2004, 25, 75–84. [Google Scholar] [CrossRef]
- Murphy, P.M.; Baggiolini, M.; Charo, I.F.; Hébert, C.A.; Horuk, R.; Matsushima, K.; Miller, L.H.; Oppenheim, J.J.; Power, C.A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 2000, 52, 145–176. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.M. Chemokine Receptors, xPharm—The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–5. [Google Scholar]
- Baggiolini, M. Chemokines in pathology and medicine. J. Intern. Med. 2001, 50, 91–104. [Google Scholar] [CrossRef]
- Schwabe, R.F.; Bataller, R.; Brenner, D.A. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am. J. Physiol. Liver Physiol. 2003, 285, G949–G958. [Google Scholar] [CrossRef]
- Koelink, P.J.; Overbeek, S.A.; Braber, S.; de Kruijf, P.; Folkerts, G.; Smit, M.J.; Kraneveld, A.D. Targeting chemokine receptors in chronic inflammatory diseases: An extensive review. Pharmacol. Ther. 2012, 133, 1–18. [Google Scholar] [CrossRef]
- Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef]
- Shields, P.L.; Morland, C.M.; Salmon, M.; Qin, S.; Hubscher, S.G.; Adams, D.H. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J. Immunol. 1999, 163, 6236–6243. [Google Scholar] [CrossRef]
- Cao, S.; Liu, M.; Sehrawat, T.S.; Shah, V.H. Regulation and functional roles of chemokines in liver diseases. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 630–647. [Google Scholar] [CrossRef]
- Gambichler, T.; Genc, Z.; Skrygan, M.; Scola, N.; Tigges, C.; Terras, S.; Bechara, F.G.; Kreuter, A. Cytokine and chemokine ligand expression in cutaneous lupus erythematosus. Eur. J. Dermatol. 2012, 22, 319–323. [Google Scholar] [CrossRef]
- Fallahi, P.; Ferrari, S.M.; Ragusa, F.; Ruffilli, I.; Elia, G.; Paparo, S.R.; Antonelli, A. Th1 Chemokines in Autoimmune Endocrine Disorders. J. Clin. Endocrinol. Metab. 2019, 105, 1046–1060. [Google Scholar] [CrossRef]
- Marquez, L.; Banchereau, R.; Ueno, H.; Banchereau, J.; Chaussabel, D. Role of chemokines and chemokine receptors in the pathogenesis of autoimmune hepatitis: It takes two to tango. Hepatology 2016, 63, 219–231. [Google Scholar]
- Mackay, C.R.; Bromley, S.K.; Windhagen, A. CXC chemokines in autoimmune diseases of the liver and pancreas with a focus on autoimmune hepatitis. Clin. Exp. Immunol. 2020, 200, 4–25. [Google Scholar]
- Gershwin, M.E.; Selmi, C.; Worman, H.J. The functional role of chemokines in the pathogenesis of autoimmune liver diseases. Autoimmune Rev. 2018, 17, 555–563. [Google Scholar]
- Volk, M.L.; Reau, N. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: A Patient-Friendly Summary of the 2019 AASLD Guidelines. Clin. Liver Dis. 2021, 17, 85–89. [Google Scholar] [CrossRef]
- Mack, C.L.; Adams, D.; Assis, D.N.; Kerkar, N.; Manns, M.P.; Mayo, M.J.; Vierling, J.M.; Alsawas, M.; Murad, M.H.; Czaja, A.J. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology 2019, 72, 671–722. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Autoimmune hepatitis. J. Hepatol. 2015, 63, 971–1004. [Google Scholar] [CrossRef]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.; et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef]
- Groom, J.R.; Luster, A.D. CXCR3 in T cell function. Exp. Cell Res. 2011, 317, 620–631. [Google Scholar] [CrossRef]
- Marra, F.; Tacke, F. Roles for chemokines in liver disease. Gastroenterology 2014, 147, 577–594. [Google Scholar] [CrossRef]
- Kamijo, A.; Yoshizawa, K.; Joshita, S.Y.S.; Umemura, T.; Ichijo, T.; Matsumoto, A.; Ota, M.; Tanaka, E. Cytokine profiles affecting the pathogenesis of autoimmune hepatitis in Japanese patients. Hepatol. Res. 2011, 41, 350–357. [Google Scholar] [CrossRef]
- Lee, E.Y.; Lee, Z.H.; Song, Y.W. CXCL10 and autoimmune diseases. Autoimmun. Rev. 2009, 8, 379–383. [Google Scholar] [CrossRef]
- Czaja, A.J. Review article: Chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment. Pharmacol. Ther. 2014, 40, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Ferrari, S.M.; Giuggioli, D.; Ferrannini, D.E.; Ferri, C.; Fallahi, P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun. Rev. 2014, 13, 272–280. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interf. Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Queck, A.; Bode, H.; Uschner, F.E.; Brol, M.J.; Graf, C.; Schulz, M.; Jansen, C.; Praktiknjo, M.; Schierwagen, R.; Klein, S.; et al. Systemic MCP-1 Levels Derive Mainly From Injured Liver and Are Associated with Complications in Cirrhosis. Front. Immunol. 2020, 11, 354. [Google Scholar] [CrossRef]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101 Pt B, 107598. [Google Scholar] [CrossRef]
- Marra, F.; DeFranco, R.; Grappone, C.; Milani, S.; Pastacaldi, S.; Pinzani, M.; Romanelli, R.G.; Laffi, G.; Gentilini, P. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: Correlation with monocyte infiltration. Am. J. Pathol. 1998, 152, 423–430. [Google Scholar]
- Bouma, G.; van Nieuwkerk, C.M. Treatment Withdrawal in Autoimmune Hepatitis. Dig. Dis. 2015, 33, 88–93. [Google Scholar] [CrossRef]
- Harrison, L.; Gleeson, D. Stopping immunosuppressive treatment in autoimmune hepatitis (AIH): Is it justified (and in whom and when)? Liver Int. 2019, 39, 610–620. [Google Scholar] [CrossRef]
- Hartl, J.; Ehlken, H.; Weiler-Normann, C.; Sebode, M.; Kreuels, B.; Pannicke, N.; Zenouzi, R.; Glaubke, C.; Lohse, A.W.; Schramm, C. Patient selection based on treatment duration and liver biochemistry increases success rates after treatment withdrawal in autoimmune hepatitis. J. Hepatol. 2015, 62, 642–646. [Google Scholar] [CrossRef]
- van Gerven, N.M.; Verwer, B.J.; Witte, B.I.; van Hoek, B.; Coenraad, M.J.; van Erpecum, K.J.; Beuers, U.; van Buuren, H.R.; de Man, R.A.; Drenth, J.P.; et al. Relapse is almost universal after withdrawal of immunosuppressive medication in patients with autoimmune hepatitis in remission. J. Hepatol. 2013, 58, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Kessel, C.; Lavric, M.; Weinhage, T.; Brueckner, M.; de Roock, S.; Däbritz, J.; Weber, J.; Vastert, S.J.; Foell, D. Serum biomarkers confirming stable remission in inflammatory bowel disease. Sci. Rep. 2021, 11, 6690. [Google Scholar] [CrossRef]
- Murayama, M.A.; Shimizu, J.; Miyabe, C.; Yudo, K.; Miyabe, Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front. Immunol. 2023, 14, 1100869. [Google Scholar] [CrossRef]
- Lim, T.Y.; Heneghan, M. Biomarkers of immunosuppression. Clin. Liver Dis. 2016, 8, 34–38. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Q.Y.C.; Wang, F.; Kong, X. Functional role of CCL5/RANTES in liver disease. Liver Res. 2020, 4, 28–34. [Google Scholar] [CrossRef]
- Covelli, C.; Sacchi, D.; Sarcognato, S.; Cazzagon, N.; Grillo, F.; Baciorri, F.; Fanni, D.; Cacciatore, M.; Maffeis, V.; Guido, M. Pathology of autoimmune hepatitis. Pathologica 2021, 113, 185–193. [Google Scholar] [CrossRef]
- Colucci, G.; Invernizzi, F.; Renteria, S.U.; Perbellini, R.; Degasperi, E.; D’Ambrosio, R.; Galmozzi, E.; Lunghi, G.; Sguazzini, E.; Lampertico, P.; et al. The CCR5 and CXCR3 Pathways in Hepatitis C Virus Liver Transplanted Recipients Treated by a Direct Antiviral Agent Regimen: Informative Kinetics Profiles. Viral Immunol. 2021, 34, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Baeck, C.; Wehr, A.; Karlmark, K.R.; Heymann, F.; Vucur, M.; Gassler, N.; Huss, S.; Klussmann, S.; Eulberg, D.; Luedde, T.; et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 2012, 61, 416–426. [Google Scholar] [CrossRef]
- Perez-Martinez, L.; Perez-Matute, P.; Aguilera-Lizarraga, J.; Rubio-Mediavilla, S.; Narro, J.; Recio, E.; Ochoa-Callejero, L.; Oteo, J.-A.; Blanco, J.-R. Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). J. Antimicrob. Chemother. 2014, 69, 1903–1910. [Google Scholar] [CrossRef]
- Eksteen, B.; Bowlus, C.L.; Montano-Loza, A.J.; Lefebvre, E.; Fischer, L.; Vig, P.; Martins, E.B.; Ahmad, J.; Yimam, K.K.; Pockros, P.J.; et al. Efficacy and Safety of Cenicriviroc in Patients with Primary Sclerosing Cholangitis: PERSEUS Study. Hepatol. Commun. 2020, 22, 478–490. [Google Scholar] [CrossRef]
- Miao, M.; De Clercq, E.; Li, G. Clinical significance of chemokine receptor antagonists. Expert Opin. Drug Metab. Toxicol. 2020, 16, 11–30. [Google Scholar] [CrossRef] [PubMed]
Baseline Parameters | Patients (n. 48) |
---|---|
Age [years] * | 56.5 (20–83) |
Males | 20 (41.7%) |
Histological grading [Ishak] * | |
G4–G8 | 20 (42%) |
G9–G12 | 24 (50%) |
G13–G18 | 4 (8%) |
Histological staging [Ishak] * | |
S1–S3 | 40 (83%) |
S4–S6 | 8 (17%) |
Autoantibodies | |
ANA- and SMA-positive | 26 (54%) |
ANA-positive | 18 (38%) |
SMA-positive | 4 (8%) |
Total bilirubin [mg/dL] * | 2.05 (0.4–29.8) |
Direct bilirubin [mg/dL] * | 2.06 (0.1–20.9) |
AST [U/L] * | 849 (112–3396) |
ALT [U/L] * | 1107 (149–6059) |
GGT [U/L] * | 254 (16–1470) |
ALP [U/L] * | 135 (49–530) |
IgG [mg/dL] * | 2033 (1169–5178) |
Gamma-globulins [g/dL] * | 2.3 (1.11–4.54) |
Baseline | AIH * n. 48 | HD * n. 49 | p Value |
---|---|---|---|
IP-10 pg/mL | 261 (50–1008) | 101 (60–374) | <0.01 ** |
MCP-1 pg/mL | 689 (321–1612) | 330 (261–558) | <0.01 ** |
RANTES pg/mL | 59,095 (5656–71,403) | 52,010 (26,410–73,200) | NS ** |
Treatment | Patients |
---|---|
Induction therapy | |
Pred | 43 (90%) |
AZT | 1 (2%) |
Pred + AZT | 4 (8%) |
Maintenance therapy | |
Pred | 15 (31%) |
AZT | 13 (27%) |
Pred + AZT | 15 (31%) |
Pred + MMF | 5 (10%) |
Ck | N. | AIH Baseline | AIH Remission | HD (49) | p Value | |
---|---|---|---|---|---|---|
IP-10 pg/mL | 32 | 261 (50–1008) | 106 (28–791) | 101 (60–374) | <0.01 * | NS ** |
MCP-1 pg/mL | 32 | 689 (321–1612) | 387 (138–710) | 330 (261–558) | <0.01 * | NS ** |
RANTES pg/mL | 32 | 59,095 (5656–71,403) | 53,560 (3250–51,100) | 52,010 (26,410–73,200) | NS * | NS ** |
RANTES H pg/mL | 12 | 70,960 (48,700–61,600) | 49,149 (24,810–53,700) | <0.01 * | NS ** | |
RANTES L pg/mL | 20 | 29,450 (5656–71,403) | 64,687 (31,200–51,100) | <0.05 * | NS ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colucci, G.; Sguazzini, E.; Uceda Renteria, S.; Perbellini, R.; Ceriotti, F.; Dibenedetto, C.; Donato, M.F.; Lampertico, P. RANTES, IP-10 and MCP-1 Profiles in Patients with Autoimmune Hepatitis (AIH) at Baseline and During Immunosuppressive Treatment. Livers 2025, 5, 19. https://doi.org/10.3390/livers5020019
Colucci G, Sguazzini E, Uceda Renteria S, Perbellini R, Ceriotti F, Dibenedetto C, Donato MF, Lampertico P. RANTES, IP-10 and MCP-1 Profiles in Patients with Autoimmune Hepatitis (AIH) at Baseline and During Immunosuppressive Treatment. Livers. 2025; 5(2):19. https://doi.org/10.3390/livers5020019
Chicago/Turabian StyleColucci, Giuseppe, Enrico Sguazzini, Sara Uceda Renteria, Riccardo Perbellini, Ferruccio Ceriotti, Clara Dibenedetto, Maria Francesca Donato, and Pietro Lampertico. 2025. "RANTES, IP-10 and MCP-1 Profiles in Patients with Autoimmune Hepatitis (AIH) at Baseline and During Immunosuppressive Treatment" Livers 5, no. 2: 19. https://doi.org/10.3390/livers5020019
APA StyleColucci, G., Sguazzini, E., Uceda Renteria, S., Perbellini, R., Ceriotti, F., Dibenedetto, C., Donato, M. F., & Lampertico, P. (2025). RANTES, IP-10 and MCP-1 Profiles in Patients with Autoimmune Hepatitis (AIH) at Baseline and During Immunosuppressive Treatment. Livers, 5(2), 19. https://doi.org/10.3390/livers5020019