ADME/Tox Study, Phytochemical Analysis and In Vitro Antifungal Activity of Essential Oil from Varronia curassavica Jacq. (Boraginaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil Extraction
2.3. Gas Chromatography-Mass Spectrometry Analysis
2.4. Antifungal Activity
2.5. Fluconazole Potentiating Action
2.6. In Silico Prediction
2.7. Statistical Analysis
3. Results
3.1. Phytochemical Composition
3.2. Antifungal Activity and Fluconazole Potentiating Effect
3.3. ADME/Tox Prediction with α-Pinene
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perfect, J.R.; Ghannoum, M. Emerging issues in antifungal resistance. Infect. Dis. Clin. N. Am. 2020, 34, 921–943. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Microbiol. Spectr. 2017, 5, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and mechanisms of antifungal resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Bortoluzzi, M.M.; Schmitt, V.; Mazur, C.E. Efeito fitoterápico de plantas medicinais sobre a ansiedade: Uma breve revisão. Res. Soc. Dev. 2020, 9, 47. [Google Scholar] [CrossRef]
- Uma, K.; Huang, X.; Kumar, B.A. Antifungal effect of plant extract and essential oil. Chin. J. Integr. Med. 2016, 23, 233–239. [Google Scholar] [CrossRef]
- Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res. 2019, 10, 494–504. [Google Scholar] [CrossRef]
- Muftah, H.; Oezcelik, B.; Oyardi, O.; Orhan, D.D. Comparative Evaluation of Medicinal Plant Extracts and Antimicrobial Magistrals. New Microbiol. 2024, 46, 361–366. [Google Scholar]
- Rao, J.; Chen, B.; McClements, D.J. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annu. Rev. Food Sci. Technol. 2019, 10, 365–387. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Pandian, A.; Warkentin, T.D. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clin. Phytosci. 2021, 7, 1–11. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil—New insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef] [PubMed]
- Nuță, D.C.; Limban, C.; Chiriță, C.; Chifiriuc, M.C.; Costea, T.; Ioniță, P.; Nicolau, I.; Zarafu, I. Contribution of essential oils to the fight against microbial biofilms—A review. Processes 2021, 9, 537. [Google Scholar] [CrossRef]
- Toghlobi, G.S.S.; Arantes, R.A.; Knudsen, B.G.; Tabach, R.; Pereira, M.A.A.; de Carvalho, R.G.; Ferraz, R.R.; Rodrigues, F.S. Usos clínicos do fitoterápico da erva-baleeira (Varronia curassavica Jacq.): Revisão da literatura. Int. J. Health Manag. Rev. 2022, 8, 1–10. [Google Scholar] [CrossRef]
- Andrade, K.C.R.; Martins, D.H.N.; Barros, D.D.A.; Souza, P.M.D.; Silveira, D.; Bazzo, Y.M.F.; Magalhães, P.D.O. Essential oils of Cordia species, compounds and applications: A systematic review. Bol. Latinoam. Caribe Plant. Med. Aromat. 2021, 21, 156–175. [Google Scholar] [CrossRef]
- Silva, K.P.; de Carvalho Santos, T.A.; Moutinho, B.L.; da Silva, R.S.; dos Santos Pinto, V.; Blank, A.F.; Corrêa, C.B.; Scher, R.; Fernandes, R.P.M. Using Varronia curassavica (Cordiaceae) essential oil for the biocontrol of Phytomonas serpens. Ind. Crops Prod. 2019, 139, 1–7. [Google Scholar] [CrossRef]
- Santos, R.P.; Nunes, E.P.; Nascimento, R.F.; Santiago, G.M.P.; Menezes, G.H.A.; Silveira, E.R.; Pessoa, O.D.L. Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the Northeast of Brazil. J. Braz. Chem. Soc. 2006, 17, 1027–1030. [Google Scholar] [CrossRef]
- Martim, J.K.P.; Maranho, L.T.; Costa-Casagrande, T.A. Role of the chemical compounds present in the essential oil and in the extract of Cordia verbenacea DC as an anti-inflammatory, antimicrobial and healing product. J. Ethnopharmacol. 2021, 265, 1–8. [Google Scholar] [CrossRef]
- Pereira, P.S.; de Oliveira, L.G.; de Lima, V.F.; da Silva, M.A.F.; Rodrigues, I.A.; Almeida, E.M. Cytotoxicity of essential oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules 2021, 26, 4485. [Google Scholar] [CrossRef]
- Hernandez, T.; Canales, M.; Avila, J.G.; García, A.M.; Martínez, A.; Caballero, J.; Romo de Vivar, A. Antimicrobial activity of the essential oil and extracts of Cordia curassavica (Boraginaceae). J. Ethnopharmacol. 2007, 111, 137–141. [Google Scholar] [CrossRef]
- Matias, E.F.F.; Alves, R.R.; Silva, M.K.N.; da Costa, J.G.M.; Coutinho, H.D.M. Biological activities and chemical characterization of Cordia verbenacea DC. as tool to validate the ethnobiological usage. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stoppa, M.A.; Casemiro, L.A.; Vinholis, A.H.C.; Cunha, W.R.; Silva, M.L.A.; Martins, C.H.G.; Furtado, N.A.J.C. Comparative study of the recommended methodologies by Clsi and Eucast for activity evaluation antifungal. Quim. Nova 2009, 32, 498–502. [Google Scholar] [CrossRef]
- Morais-Braga, M.F.B.; Sales, D.L.; Carneiro, J.N.P.; Machado, A.J.T.; Dos Santos, A.T.L.; de Freitas, M.A.; Martins, G.M.d.A.B.; Leite, N.F.; de Matos, Y.M.L.; Tintino, S.R.; et al. Psidium guajava L. and Psidium brownianum Mart ex DC.: Chemical composition and anti–Candida effect in association with fluconazole. Microb. Pathog. 2016, 95, 200–207. [Google Scholar] [CrossRef]
- Coutinho, H.D.; Costa, J.G.; Lima, E.O.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 2008, 54, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, 5–14. [Google Scholar] [CrossRef]
- Sciarrone, D.; Rigano, F.; Carnovale, C.; Cimino, F.; Dugo, P. Quali-quantitative characterization of the volatile constituents in Cordia verbenacea DC essential oil exploiting advanced chromatographic approaches and nuclear magnetic resonance analysis. J. Chromatogr. A 2017, 1524, 246–253. [Google Scholar] [CrossRef]
- Marques, A.P.S.; de Andrade, M.A.; Reis, J.D.; de Castro, F.D.; de Oliveira, F.L.; Costa, J.G.M. Chemical composition of essential oil from Varronia curassavica Jacq. accessions in different seasons of the year. Ind. Crops Prod. 2019, 140, 1–10. [Google Scholar] [CrossRef]
- Farias, J.P.; Lima, F.A.; Lins, P.M.P.; Nogueira, P.M.; Rocha, S.K.S.; Soares, F.L. Influence of plant age on chemical composition, antimicrobial activity and cytotoxicity of Varronia curassavica Jacq. essential oil produced on an industrial scale. Agriculture 2023, 13, 373. [Google Scholar] [CrossRef]
- Rodrigues, F.F.G.; Silva, D.A.; Menezes, I.R.A.; Coutinho, H.D.M.; Morais, E.C.; Rocha, M.F.G. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves. Pharmacogn. Res. 2012, 4, 161–165. [Google Scholar] [CrossRef]
- Andrade, F.P.; Braga, L.S.; Soares, R.A.; Fernandes, R.P.M. Toxicity of Varronia curassavica Jacq. essential oil to two arthropod pests and their natural enemy. Neotrop. Entomol. 2021, 50, 835–845. [Google Scholar] [CrossRef]
- Castro-Nizio, D.A.; Blank, A.F.; de Andrade Brito, F.; Gagliardi, P.R.; Alves, E.; Arrigoni-Blank, M.D.F. A comparative study of the antifungal activity of essential oils of Varronia curassavica Jacq. obtained by different distillation methods. Biosci. J. 2020, 36, 1856–1865. [Google Scholar] [CrossRef]
- Lima, F.J.A.; Leite, K.R.B.; Silva, T.M.; Oliveira, F.S.A.; Nascimento, D.M.; Santana, A.S. Caracterização do crescimento e produção de óleo essencial da erva baleeira (Varronia curassavica Jaqc). Res. Soc. Dev. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Ravi, H.K.; Khan, M.K.; Périno-Issartier, S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; Jayaweera, L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, K.; Rezvani, M.E.; Ghoreishi, A.; Soukhtanloo, M. The effects of alpha-pinene on inflammatory responses and oxidative stress in the formalin test. Brain Res. Bull. 2023, 203, 110774. [Google Scholar] [CrossRef]
- Abe, M.; Haga, Y.; Endo, Y.; Suzuki, Y. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci. 2024, 115, 1317–1332. [Google Scholar] [CrossRef]
- Shahina, Z.; Hanif, M.; Gulzar, T.; Gilani, S. Rosemary essential oil and its components 1, 8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS ONE 2022, 17, e0277097. [Google Scholar] [CrossRef]
- Barros, D.B.; Sousa, L.R.; Silva, M.A.; Santos, M.G.; Lima, E.O.; Campos, L.M. Antifungal activity of terpenes isolated from the Brazilian Caatinga: A review. Braz. J. Biol. 2023, 83, e270966. [Google Scholar] [CrossRef]
- Barros, D.B.; Sousa, L.R.; Silva, M.A.; Santos, M.G.; Lima, E.O.; Campos, L.M. α-Pinene: Docking study, cytotoxicity, mechanism of action, and anti-biofilm effect against Candida albicans. Antibiotics 2023, 12, 345. [Google Scholar] [CrossRef]
- Rivera-Yañez, C.R.; Rivero-Cruz, J.F.; Pedraza-Chaverri, J.; Sanchez-Salgado, J.C.; Nogueda-Torres, B.; Ortega-Cervantes, L. Anti-Candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene—An in vitro study. Molecules 2017, 22, 2095. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, J.R.; Lima, E.O.; Silva, S.S.; Santos, J.B. Antifungal action of α-pinene against Candida spp. isolated from patients with otomycosis and effects of its association with boric acid. Nat. Prod. Res 2021, 35, 6190–6193. [Google Scholar] [CrossRef] [PubMed]
- Barros, D.B.; Sousa, L.R.; Silva, M.A.; Santos, M.G.; Lima, E.O.; Campos, L.M. Efeito antifúngico de α-pineno isolado e em associação com antifúngicos frente às cepas de Candida albicans. Res. Soc. Dev. 2022, 11, 1–8. [Google Scholar] [CrossRef]
- Saracino, I.M.; Foschi, C.; Pavoni, M.; Spigarelli, R.; Valerii, M.C.; Spisni, E. Antifungal activity of natural compounds vs. Candida spp.: A mixture of cinnamaldehyde and eugenol shows promising in vitro results. Antibiotics 2022, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Francomano, F.; Caruso, A.; Salzano, G.; Fresta, M.; Cosco, D. β-Caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- Alighiri, D. Isolation and antifungal activity of caryophyllene from clove leaf oil (Syzygium aromaticum L.) on mahogany leaf composites. Sci. Community Pharm. J. 2022, 1, 17–25. [Google Scholar]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, S.M.; Majid, A.S. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Bezerra, C.F.; Pereira, A.C.; Lima, E.O.; Almeida, J.R. Antifungal effect of the liposome encapsulation of the trans-caryophylene and its association with fluconazole. Chem. Biol. Interact. 2023, 373, 1–10. [Google Scholar] [CrossRef]
- Sobrinho, A.C.N.; Silva, M.L.; Oliveira, R.R.; Sousa, E.P.; Soares, M.B. Antifungal and antioxidant activities of Vernonia chalybaea Mart. ex DC. essential oil and their major constituent β-caryophyllene. Braz. Arch. Biol. Technol. 2020, 63, 1–11. [Google Scholar] [CrossRef]
- Salas-Oropeza, J.; Gonzalez-Trujano, M.E.; Reyes-Ramirez, A.; Estrada-Soto, S.; Soto-Rios, R. Wound healing activity of α-pinene and α-phellandrene. Molecules 2021, 26, 2488. [Google Scholar] [CrossRef]
- Şişman, T.; Ceylan, Z. The embryotoxicity of alpha-pinene to the early life stages of zebrafish (Danio rerio Hamilton, 1822). Nat. Life Sci. Commun. 2023, 22, 1–11. [Google Scholar] [CrossRef]
- Silva, J.T.d.C.; Moreira, F.C.; Bezerra, J.J.L.; Farias, N.S.; Menêses, A.V.S.; Santos, A.G.d.; Santana, M.d.S.; Silva, M.E.P.d.; Fonseca, V.J.A.; Costa, A.R.; et al. In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents. Future Pharmacol. 2024, 4, 380–394. [Google Scholar] [CrossRef]
- Satou, T.; Murakami, S.; Hayashi, S.; Koike, K.; Sengoku, T. Mouse brain concentrations of α-pinene, limonene, linalool, and 1,8-cineole following inhalation. Flavour Fragr. J. 2016, 32, 36–39. [Google Scholar] [CrossRef]
- Khoshnazar, M.; Parvardeh, S.; Bigdeli, M.R. Alpha-pinene exerts neuroprotective effects via anti-inflammatory and anti-apoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. J. Stroke Cerebrovasc. Dis. 2020, 29, 1–10. [Google Scholar] [CrossRef]
- Rahayu, M.; Mahardika, A.M.; Fattah, F.A.; Krisnadi, D. Alpha-pinene attenuates microglial NF-κB activation and iNOS expression in gp120-induced neuroinflammation. MNJ (Malang Neurol. J.) 2021, 7, 80–84. [Google Scholar] [CrossRef]
- Green, A.K.; Morgan, J.A.; Vogt, P.F.; Harlow, H.J.; Barnes, B.M.; Levenson, J.W. Is alpha-pinene a substrate for permeability-glycoprotein in wood rats? J. Chem. Ecol. 2006, 32, 1197–1211. [Google Scholar] [CrossRef]
Components | RI | (%) |
---|---|---|
α-pinene | 976 | 44.46 |
β-Pinene | 980 | 2.79 |
β-Elemene | 1375 | 1.14 |
β-Caryophyllene | 1428 | 22.87 |
α-humulene | 1460 | 2.91 |
Zingiberene | 1492 | 1.01 |
Bicyclogermacrene | 1496 | 13.05 |
cis-α-Bisabolene | 1778 | 2.74 |
Nerolidol | 1961 | 3.32 |
Caryophyllene oxide | 2023 | 1.89 |
Juniper camphor | 2205 | 1.18 |
Hydrocarbon Monoterpene | 47.25 | |
Oxygenated Monoterpene | 1.18 | |
Hydrocarbon Sesquiterpene | 43.72 | |
Oxygenated Sesquiterpene | 5.21 | |
Total | 97.36 |
IC50 | μg/mL | ||
---|---|---|---|
C. albicans | C. krusei | C. tropicalis | |
EOVC | 254.3 | >1024 | 649.2 |
FCZ | 16.14 | 52.41 | 4.775 |
FCZ + EOVC | 0.7996 | 17.73 | 0.003 |
Category | Property | Value |
---|---|---|
Physicochemical Property | MF | C10H16 |
MW | 136.13 g/mol | |
NHA | 0 | |
NHD | 0 | |
NRB | 0 | |
TPSA | 0.0 | |
logS | −4.662 | |
Medicinal Chemistry | Lipinski Rule | Accepted |
Pfizer Rule | Rejected | |
GSK Rule | Rejected | |
Golden Triangle | Rejected |
Category | Property | Value | Decision |
---|---|---|---|
Absorption | Caco-2 Permeability | −4.303 | ● |
MDCK Permeability | 1.8 × 10−5 | ● | |
Pgp-inhibitor | --- | ● | |
Pgp-substrate | --- | ● | |
HIA | --- | ● | |
Distribution | BBB Penetration | ++ | ● |
Metabolism | CYP1A2 inhibitor | - | ● |
CYP2C19 inhibitor | -- | ● | |
CYP2C9 inhibitor | - | ● | |
CYP2D6 inhibitor | --- | ● | |
CYP3A4 inhibitor | --- | ● | |
Excretion | CL | 15.022 | ● |
T1/2 | 0.114 | - | |
Toxicity | Human Hepatotoxicity | -- | ● |
Drug-Induced Liver Injury | --- | ● | |
AMES Toxicity | --- | ● | |
Rat Oral Acute Toxicity | --- | ● | |
Skin Sensitization | -- | ● | |
Carcinogenicity | --- | ● | |
Eye Corrosion | +++ | ● | |
Eye Irritation | +++ | ● | |
Respiratory Toxicity | ++ | ● |
Property | Value | Decision |
---|---|---|
Androgen receptor | --- | ● |
Androgen receptor ligand-binding domain | --- | ● |
Aryl hydrocarbon receptor | --- | ● |
NR-Aromatase | --- | ● |
Estrogen receptor | --- | ● |
Estrogen receptor ligand-binding domain | + | ● |
Peroxisome proliferator-activated receptor gamma | --- | ● |
Antioxidant response element | --- | ● |
ATPase family AAA domain-containing protein 5 | --- | ● |
Heat shock factor response element | 0.032 | ● |
Mitochondrial membrane potential | 0.082 | ● |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.T.d.C.; Menezes, S.A.; Silva, V.B.d.; Novais, M.H.G.; Albuquerque, E.S.; Franco, R.A.; Farias, N.S.; Silva, N.C.d.; Souza, D.L.d.; Oliveira, E.C.C.d.; et al. ADME/Tox Study, Phytochemical Analysis and In Vitro Antifungal Activity of Essential Oil from Varronia curassavica Jacq. (Boraginaceae). Analytica 2024, 5, 440-450. https://doi.org/10.3390/analytica5030029
Silva JTdC, Menezes SA, Silva VBd, Novais MHG, Albuquerque ES, Franco RA, Farias NS, Silva NCd, Souza DLd, Oliveira ECCd, et al. ADME/Tox Study, Phytochemical Analysis and In Vitro Antifungal Activity of Essential Oil from Varronia curassavica Jacq. (Boraginaceae). Analytica. 2024; 5(3):440-450. https://doi.org/10.3390/analytica5030029
Chicago/Turabian StyleSilva, José Thyálisson da Costa, Saulo Almeida Menezes, Viviane Bezerra da Silva, Maria Hellena Garcia Novais, Emílio Sousa Albuquerque, Rafael Albuquerque Franco, Naiza Saraiva Farias, Nathallia Correia da Silva, Dieferson Leandro de Souza, Elaine Cristina Conceição de Oliveira, and et al. 2024. "ADME/Tox Study, Phytochemical Analysis and In Vitro Antifungal Activity of Essential Oil from Varronia curassavica Jacq. (Boraginaceae)" Analytica 5, no. 3: 440-450. https://doi.org/10.3390/analytica5030029
APA StyleSilva, J. T. d. C., Menezes, S. A., Silva, V. B. d., Novais, M. H. G., Albuquerque, E. S., Franco, R. A., Farias, N. S., Silva, N. C. d., Souza, D. L. d., Oliveira, E. C. C. d., Freitas, D. G. d. S., Lima, C. M. G., Sousa, S. D. G. d., Braga, M. F. B. M., Coutinho, H. D. M., & Almeida-Bezerra, J. W. (2024). ADME/Tox Study, Phytochemical Analysis and In Vitro Antifungal Activity of Essential Oil from Varronia curassavica Jacq. (Boraginaceae). Analytica, 5(3), 440-450. https://doi.org/10.3390/analytica5030029