Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications
Abstract
1. Introduction
2. Assessment of the Method Greenness
3. Case Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An Approach to Reconcile the Principles of Green Analytical Chemistry and Functionality. TrAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- Locatelli, M.; Kabir, A.; Perrucci, M.; Ulusoy, S.; Ulusoy, H.I.; Ali, I. Green Profile Tools: Current Status and Future Perspectives. Adv. Sample Prep. 2023, 6, 100068. [Google Scholar] [CrossRef]
- Kowtharapu, L.P.; Katari, N.K.; Muchakayala, S.K.; Marisetti, V.M. Green Metric Tools for Analytical Methods Assessment Critical Review, Case Studies and Crucify. TrAC Trends Anal. Chem. 2023, 166, 117196. [Google Scholar] [CrossRef]
- Saroj, S.; Shah, P.; Jairaj, V.; Rathod, R. Green Analytical Chemistry and Quality by Design: A Combined Approach towards Robust and Sustainable Modern Analysis. Curr. Anal. Chem. 2018, 14, 367–381. [Google Scholar] [CrossRef]
- Kokosa, J.M. Selecting an Extraction Solvent for a Greener Liquid Phase Microextraction (LPME) Mode-Based Analytical Method. TrAC Trends Anal. Chem. 2019, 118, 238–247. [Google Scholar] [CrossRef]
- Tobiszewski, M. Metrics for Green Analytical Chemistry. Anal. Methods 2016, 8, 2993–2999. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Wojnowski, W. Complementary Green Analytical Procedure Index (ComplexGAPI) and Software. Green Chem. 2021, 23, 8657–8665. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep–Analytical Greenness Metric for Sample Preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green Analytical Chemistry Metrics: A Review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, Y.A.; Ibrahim, A.E.; El Deeb, S.; Sayed, R.A. Green Chemometric Determination of Cefotaxime Sodium in the Presence of Its Degradation Impurities Using Different Multivariate Data Processing Tools; GAPI and AGREE Greenness Evaluation. Molecules 2023, 28, 2187. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.M.; Hammad, S.F.; El-Malla, S.F. Green Spectrophotometric Methods for Determination of a Monosodium Glutamate in Different Matrices. Microchem. J. 2021, 169, 106622. [Google Scholar] [CrossRef]
- Magdy, G.; Abdel Hakiem, A.F.; Belal, F.; Abdel-Megied, A.M. Green One-Pot Synthesis of Nitrogen and Sulfur Co-Doped Carbon Quantum Dots as New Fluorescent Nanosensors for Determination of Salinomycin and Maduramicin in Food Samples. Food Chem. 2021, 343, 128539. [Google Scholar] [CrossRef]
- Megahed, S.M.; Habib, A.A.; Hammad, S.F.; Kamal, A.H. Experimental Design Approach for Development of Spectrofluorimetric Method for Determination of Favipiravir; a Potential Therapeutic Agent against COVID-19 Virus: Application to Spiked Human Plasma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119241. [Google Scholar] [CrossRef]
- Haq, N.; Iqbal, M.; Alanazi, F.K.; Alsarra, I.A.; Shakeel, F. Applying Green Analytical Chemistry for Rapid Analysis of Drugs: Adding Health to Pharmaceutical Industry. Arab. J. Chem. 2017, 10, S777–S785. [Google Scholar] [CrossRef]
- Yabré, M.; Ferey, L.; Somé, T.I.; Mercier, O.; Gaudin, K. Green Reversed-Phase HPLC Development Strategy: Application to Artesunate and Amodiaquine Analysis. J. Sep. Sci. 2020, 43, 4390–4404. [Google Scholar] [CrossRef]
- Yabré, M.; Ferey, L.; Somé, I.T.; Gaudin, K. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules 2018, 23, 1065. [Google Scholar] [CrossRef]
- Shi, M.; Zheng, X.; Zhang, N.; Guo, Y.; Liu, M.; Yin, L. Overview of Sixteen Green Analytical Chemistry Metrics for Evaluation of the Greenness of Analytical Methods. TrAC Trends Anal. Chem. 2023, 166, 117211. [Google Scholar] [CrossRef]
- Mansour, F.R.; Omer, K.M.; Płotka-Wasylka, J. A Total Scoring System and Software for Complex Modified GAPI (ComplexMoGAPI) Application in the Assessment of Method Greenness. Green Anal. Chem. 2024, 10, 100126. [Google Scholar] [CrossRef]
- Kannouma, R.E.; Hammad, M.A.; Kamal, A.H.; Mansour, F.R. A Dispersive Liquid–Liquid Microextraction Method Based on Solidification of Floating Organic Droplet for Determination of Antiviral Agents in Environmental Water Using HPLC/UV. Microchem. J. 2021, 171, 106790. [Google Scholar] [CrossRef]
- Mabrouk, M.M.; Soliman, S.M.; El-Agizy, H.M.; Mansour, F.R. Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for Determination of Three Gliflozins in Human Plasma by HPLC/DAD. J. Chromatogr. B 2020, 1136, 121932. [Google Scholar] [CrossRef]
- Fasciano, J.M.; Mansour, F.R.; Danielson, N.D. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column. J. Chromatogr. Sci. 2016, 54, 958–970. [Google Scholar] [CrossRef] [PubMed]
- El-Hassanein, A.M.; Mansour, F.R.; Hammad, S.F.; Abdella, A.A. Simple Colorimetric Paper-Based Test Strip for Point-of-Use Quality Testing of Ethanol-Based Hand Sanitizers. RSC Adv. 2024, 14, 8188–8194. [Google Scholar] [CrossRef]
Category | Color (Points) | ||
---|---|---|---|
Green (3) | Yellow (2) | Red (1) | |
Sample preparation | |||
Collection (1) | In-line | Online or at-line | Offline |
Preservation (2) | None | Chemical or physical | Physicochemical |
Transport (3) | None | Required | — |
Storage (4) | None | Under normal conditions | Under special conditions |
Type of method: direct or indirect (5) | No sample preparation | Simple procedures, e.g., filtration and decantation | Extraction required |
Scale of extraction (6) | Nanoextraction | Microextraction | Macroextraction |
Solvents/reagents used (7) | Solvent-free methods | Green solvents/reagents used | Non-green solvents/reagents used |
Additional treatments (8) | None | Simple treatments (extract clean up, solvent removal, etc.) | Advanced treatments (derivatization, mineralization, etc.) |
Reagents and solvents | |||
Amount (9) | <10 mL (<10 g) | 10–100 mL (10–100 g) | >100 mL (>100 g) |
Health hazard (10) | Slightly toxic, slightly irritant; NFPA health hazard score is 0 or 1 | Moderately toxic; could cause temporary incapacitation; NFPA = 2 or 3 | Serious injury on short-term exposure; known or suspected small animal carcinogen; NFPA = 4 |
Safety hazard (11) | Highest NFPA flammability, instability score of 0 or 1. No special hazards. | Highest NFPA flammability or instability score is 2 or 3, or a special hazard is used. | Highest NFPA flammability or instability score is 4 |
Instrumentation | |||
Energy (12) | ≤0.1 kW h per sample | ≤1.5 kW h per sample | >1.5 kW h per sample |
Occupational hazard (13) | Hermetization of the analytical process | — | Emission of vapors to the atmosphere |
Waste (14) | <1 mL (<1 g) | 1–10 mL (1–10 g) | >10 mL (<10 g) |
Waste treatment (15) | Recycling | Degradation, passivation | No treatment |
ADDITIONAL MARK: QUANTIFICATION | |||
Oval in the middle of GAPI: Procedure for qualification and quantification (5) | No oval in the middle of GAPI: Procedure only for qualification (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, F.R.; Płotka-Wasylka, J.; Locatelli, M. Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications. Analytica 2024, 5, 451-457. https://doi.org/10.3390/analytica5030030
Mansour FR, Płotka-Wasylka J, Locatelli M. Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications. Analytica. 2024; 5(3):451-457. https://doi.org/10.3390/analytica5030030
Chicago/Turabian StyleMansour, Fotouh R., Justyna Płotka-Wasylka, and Marcello Locatelli. 2024. "Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications" Analytica 5, no. 3: 451-457. https://doi.org/10.3390/analytica5030030
APA StyleMansour, F. R., Płotka-Wasylka, J., & Locatelli, M. (2024). Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications. Analytica, 5(3), 451-457. https://doi.org/10.3390/analytica5030030