Outcomes for Patients with Diabetic Foot Ulcers Following Transition from Medicaid to Commercial Insurance †
Abstract
:1. Introduction
2. Material and Methods
2.1. Dataset Background
2.2. Study Variables
2.3. Statistical Analysis Methods
3. Results
Propensity-Matched Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers and Their Recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [PubMed]
- McDermott, K.; Fang, M.; Boulton, A.J.M.; Selvin, E.; Hicks, C.W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 2023, 46, 209–221. [Google Scholar] [PubMed]
- Vadiveloo, T.; Jeffcoate, W.; Donnan, P.T.; Colhoun, H.C.; McGurnaghan, S.; Wild, S.; McCrimmon, R.; Leese, G.P.; Scottish Diabetes Research Network Epidemiology Group. Amputation-free survival in 17,353 people at high risk for foot ulceration in diabetes: A national observational study. Diabetologia 2018, 61, 2590–2597. [Google Scholar] [PubMed]
- Chamberlain, R.C.; Fleetwood, K.; Wild, S.H.; Colhoun, H.M.; Lindsay, R.S.; Petrie, J.R.; McCrimmon, R.J.; Gibb, F.; Philip, S.; Sattar, N.; et al. Foot Ulcer and Risk of Lower Limb Amputation or Death in People With Diabetes: A National Population-Based Retrospective Cohort Study. Diabetes Care 2022, 45, 83–91. [Google Scholar]
- Harding, J.L.; Andes, L.J.; Rolka, D.B.; Imperatore, G.; Gregg, E.W.; Li, Y.; Albright, A. National and state-level trends in nontraumatic lower-extremity amputation among U.S. medicare beneficiaries with diabetes, 2000–2017. Diabetes Care 2020, 43, 2453–2459. [Google Scholar]
- Rice, J.B.; Desai, U.; Cummings, A.K.G.; Birnbaum, H.G.; Skornicki, M.; Parsons, N.B. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care 2014, 37, 651–658, Erratum in Diabetes Care 2014, 37, 2660–2660. [Google Scholar]
- Arya, S.; Binney, Z.; Khakharia, A.; Brewster, L.P.; Goodney, P.; Patzer, R.; Hockenberry, J.; Wilson, P.W.F. Race and Socioeconomic Status Independently Affect Risk of Major Amputation in Peripheral Artery Disease. J. Am. Heart Assoc. 2018, 7, e007425. [Google Scholar]
- Brennan, M.B.; Powell, W.R.; Kaiksow, F.; Kramer, J.; Liu, Y.; Kind, A.J.H.; Bartels, C.M. Association of race, ethnicity, and rurality with major leg amputation or death among Medicare beneficiaries hospitalized with diabetic foot ulcers. JAMA Netw. Open 2022, 5, e228399. [Google Scholar]
- Tan, T.W.; Shih, C.D.; Concha-Moore, K.C.; Diri, M.M.; Hu, B.; Marrero, D.; Zhou, W.; Armstrong, D.G. Disparities in outcomes of patients admitted with diabetic foot infections. PLoS ONE 2019, 14, e0211481. [Google Scholar]
- Tan, T.W.; Armstrong, D.G.; Concha-Moore, K.C.; Marrero, D.G.; Zhou, W.; Calhoun, E.; Chang, C.-Y.; Lo-Ciganic, W.-H. Association between race/ethnicity and the risk of amputation of lower extremities among medicare beneficiaries with diabetic foot ulcers and diabetic foot infections. BMJ Open Diabetes Res. Care 2020, 8, e001328. [Google Scholar] [CrossRef]
- Skrepnek, G.H.; Mills, J.L., Sr.; Armstrong, D.G. A Diabetic Emergency One Million Feet Long: Disparities and Burdens of Illness among Diabetic Foot Ulcer Cases within Emergency Departments in the United States, 2006–2010. PLoS ONE 2015, 10, e0134914. [Google Scholar]
- Skrepnek, G.H.; Mills, J.L., Sr.; Lavery, L.A.; Armstrong, D.G. Health Care Service and Outcomes Among an Estimated 6.7 Million Ambulatory Care Diabetic Foot Cases in the U.S. Diabetes Care 2017, 40, 936–942. [Google Scholar] [PubMed]
- Eslami, M.H.; Zayaruzny, M.; Fitzgerald, G.A. The adverse effects of race, insurance status, and low income on the rate of amputation in patients presenting with lower extremity ischemia. J. Vasc. Surg. 2007, 45, 55–59. [Google Scholar]
- Fanaroff, A.C.; Yang, L.; Nathan, A.S.; Khatana, S.A.M.; Julien, H.; Wang, T.Y.; Armstrong, E.J.; Treat-Jacobson, D.; Glaser, J.D.; Wang, G.; et al. Geographic and socioeconomic disparities in major lower extremity amputation rates in metropolitan areas. J. Am. Heart Assoc. 2021, 10, e021456. [Google Scholar] [PubMed]
- Henry, A.J.; Hevelone, N.D.; Belkin, M.; Nguyen, L.L. Socioeconomic and hospital-related predictors of amputation for critical limb ischemia. J. Vasc. Surg. 2011, 53, 330–339.e1. [Google Scholar]
- Hughes, K.; Mota, L.; Nunez, M.; Sehgal, N.; Ortega, G. The effect of income and insurance on the likelihood of major leg amputation. J. Vasc. Surg. 2019, 70, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.G.; Shoo, H.; Saluja, S.; Anderson, C.D.; Khan, A.; Livingston, M.; Jude, E.B.; Lunt, M.; Dunn, G.; Heald, A.H. Social deprivation modifies the association between incident foot ulceration and mortality in type 1 and type 2 diabetes: A longitudinal study of a primary-care cohort. Diabetologia 2018, 61, 959–967. [Google Scholar]
- Gold, R.S.; Unkart, J.T.; McClelland, R.L.; Bertoni, A.G.; Allison, M.A. Health insurance status and type associated with varying levels of glycemic control in the US: The multi-ethnic study of atherosclerosis (MESA). Prim. Care Diabetes 2021, 15, 378–384. [Google Scholar]
- Tan, T.W.; Calhoun, E.A.; Knapp, S.M.; Lane, A.I.; Marrero, D.G.; Kwoh, C.K.; Zhou, W.; Armstrong, D.G. Rates of diabetes-related major amputations among racial and ethnic minority adults following Medicaid expansion under the Patient Protection and Affordable Care Act. JAMA Netw. Open 2022, 5, e223991. [Google Scholar]
- Boyle, K.K.; Kapadia, M.; Landy, D.C.; Henry, M.W.; Miller, A.O.; Westrich, G.H. Utilization of debridement, antibiotics, and implant retention for infection after total joint arthroplasty over a decade in the United States. J. Arthroplast. 2020, 35, 2210–2216. [Google Scholar]
- Francis-Sedlak, M.; LaMoreaux, B.; Padnick-Silver, L.; Holt, R.J.; Bello, A.E. Characteristics, comorbidities, and potential consequences of uncontrolled gout: An insurance-claims database study. Rheumatol. Ther. 2021, 8, 183–197. [Google Scholar] [PubMed]
- Khazi, Z.M.; Lu, Y.; Shamrock, A.G.; Duchman, K.R.; Westermann, R.W.; Wolf, B.R. Opioid use following shoulder stabilization surgery: Risk factors for prolonged use. J. Shoulder Elb. Surg. 2019, 28, 1928–1935. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [PubMed]
- Giacovelli, J.K.; Egorova, N.; Nowygrod, R.; Gelijns, A.; Kent, K.C.; Morrissey, N.J. Insurance status predicts access to care and outcomes of vascular disease. J. Vasc. Surg. 2008, 48, 905–911. [Google Scholar]
- Kim, L.K.; Swaminathan, R.V.; Minutello, R.M.; Gade, C.L.; Yang, D.C.; Charitakis, K.; Shah, A.; Kaple, R.; Bergman, G.; Singh, H.; et al. Trends in hospital treatments for peripheral arterial disease in the United States and association between payer status and quality of care/outcomes, 2007-2011. Catheter. Cardiovasc. Interv. 2015, 86, 864–872. [Google Scholar]
- McWilliams, J.M. Health consequences of uninsurance among adults in the United States: Recent evidence and implications. Milbank Q. 2009, 87, 443–494. [Google Scholar]
- Alter, D.A.; Austin, P.C.; Rosenfeld, A. The Dynamic Nature of the Socioeconomic Determinants of Cardiovascular Health: A Narrative Review. Can. J. Cardiol. 2024, 40, 989–999. [Google Scholar] [PubMed]
- Witrick, B.; Kalbaugh, C.A.; Mayo, R.; Hendricks, B.; Shi, L. Disparities in healthcare utilization by insurance status among patients with symptomatic peripheral artery disease. BMC Health Serv. Res. 2023, 23, 913. [Google Scholar] [PubMed Central]
- Alabi, O.; Beriwal, S.; Gallini, J.W.; Cui, X.; Jasien, C.; Brewster, L.; Hunt, K.J.; Massarweh, N.N. Association of Health Care Utilization and Access to Care With Vascular Assessment Before Major Lower Extremity Amputation Among US Veterans. JAMA Surg. 2023, 158, e230479. [Google Scholar] [PubMed Central]
- Allen, H.; Gordon, S.H.; Lee, D.; Bhanja, A.; Sommers, B.D. Comparison of utilization, costs, and quality of Medicaid vs. subsidized private health insurance for low-income adults. JAMA Netw. Open 2021, 4, e2032669. [Google Scholar]
- Striar, C.M.A. How Differences in Medicaid, Medicare, and Commercial Health Insurance Payment Rates Impact Access, Health Equity, and Cost; To the Point (Blog); Commonwealth Fund: New York, NY, USA, 2022. [Google Scholar]
- Wray, C.M.; Khare, M.; Keyhani, S. Access to care, cost of care, and satisfaction with care among adults with private and public health insurance in the, U.S. JAMA Netw. Open 2021, 4, e2110275. [Google Scholar] [PubMed]
- Brewer, T.W.; Bonnah, G.K.; Cairns, J.S.; Lanese, B.G.; Waimberg, J. Medicaid Coverage for Podiatric Care: A National Survey. Public Health Rep. 2023, 138, 273–280. [Google Scholar] [PubMed] [PubMed Central]
- Labovitz, J.M.; Kominski, G.F. Forecasting the Value of Podiatric Medical Care in Newly Insured Diabetic Patients During Implementation of the Affordable Care Act in California. J. Am. Podiatr. Med. Assoc. 2016, 106, 163–171. [Google Scholar] [PubMed]
- Brewer, T.W.; Lanese, B.G.; Shih, C.D.; Albright, R.H. Medicaid Coverage for Routine Foot Care. J. Am. Podiatr. Med. Assoc. 2023, 113, 22–050. [Google Scholar] [CrossRef] [PubMed]
Continuous Medicaid n = 3047 | Medicaid to Commercial Insurance n = 5809 | Standard Mean Difference | p-Value | |||
---|---|---|---|---|---|---|
n | % | n | % | |||
Demographic | ||||||
Age, y | 0.56 | <0.001 | ||||
<40 | 664 | 21.8 | 1709 | 29.4 | ||
40–49 | 747 | 24.5 | 1519 | 26.1 | ||
50–59 | 1171 | 38.4 | 1907 | 32.8 | ||
60–69 | 373 | 12.2 | 542 | 9.3 | ||
≥70 | 75 | 2.5 | 48 | 0.8 | ||
Gender | 0.05 | 0.03 | ||||
Male | 1431 | 47.0 | 2587 | 44.5 | ||
Female | 1616 | 53.0 | 3222 | 55.5 | ||
CCI | 0.3 | <0.001 | ||||
0–4 | 2949 | 96.8 | 5432 | 93.5 | ||
≥5 | 73 | 3.2 | 355 | 6.1 | ||
Comorbidities | ||||||
COPD | 1556 | 51.0 | 3370 | 58.0 | 0.29 | <0.001 |
CVD | 807 | 26.5 | 1582 | 27.2 | 0.11 | 0.47 |
CHF | 573 | 18.8 | 1085 | 18.7 | 0.07 | 0.90 |
CAD | 1012 | 33.2 | 1960 | 33.7 | 0.14 | 0.63 |
HTN | 2631 | 86.3 | 5062 | 87.1 | 0.16 | 0.31 |
CKD | 988 | 32.4 | 1549 | 26.7 | 0.09 | <0.001 |
ESRD | 631 | 20.7 | 961 | 16.5 | 0.05 | <0.001 |
PAD | 1112 | 36.5 | 2117 | 36.4 | 0.22 | 0.98 |
Obesity | 1553 | 51.0 | 3733 | 64.2 | 0.33 | <0.001 |
Depression | 1569 | 51.5 | 3703 | 63.7 | 0.10 | <0.001 |
Smoking | 1681 | 55.2 | 3985 | 68.6 | 0.34 | <0.001 |
Odds Ratios | 95% Confidence Interval | p-Value | |
---|---|---|---|
Medicaid to commercial insurance | 0.73 | 0.56–0.97 | 0.02 |
Age | 0.99 | 0.97–1.00 | 0.05 |
Charlson Comorbidity Index (CCI) | 1.03 | 0.97–1.00 | 0.37 |
Male gender | 1.48 | 1.13–1.95 | 0.004 |
Cerebrovascular disease | 1.28 | 0.97–1.68 | 0.08 |
Chronic kidney disease | 1.52 | 1.07–2.13 | 0.017 |
Congestive heart failure | 1.03 | 0.75–1.41 | 0.84 |
Coronary artery disease | 1.49 | 1.11–2.01 | 0.008 |
Hypertension | 3.76 | 1.53–12.5 | 0.01 |
Depression | 1.52 | 1.14–2.04 | 0.004 |
Peripheral artery disease | 7.14 | 4.96–10.5 | <0.001 |
Renal failure | 1.15 | 0.80–1.66 | 0.46 |
Smoking | 1.57 | 1.14–2.18 | 0.006 |
Continuous Medicaid n = 1509 | Medicaid to Commercial Insurance n = 1509 | p-Value | |||
---|---|---|---|---|---|
n | % | n | % | ||
Age, y | 1.0 | ||||
<40 | 324 | 21.5 | 321 | 21.3 | |
40–49 | 374 | 24.8 | 379 | 25.1 | |
50–59 | 587 | 38.9 | 586 | 38.8 | |
60–69 | 184 | 12.2 | 186 | 12.3 | |
Gender | 0.99 | ||||
Male | 715 | 47.4 | 717 | 47.5 | |
Female | 794 | 52.6 | 792 | 52.5 | |
CCI | 0.99 | ||||
0–4 | 1452 | 96.2 | 1449 | 96.0 | |
≥5 | 57 | 3.8 | 60 | 4.0 | |
CKD | 398 | 26.4 | 395 | 26.2 | 0.99 |
CAD | 506 | 33.5 | 539 | 35.7 | 0.99 |
PAD | 545 | 36.1 | 558 | 37.0 | 0.76 |
Smoking | 828 | 54.9 | 815 | 54.0 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, K.; Brown, T.A.; Arias Aristizábal, J.C.; Armstrong, D.G.; Tan, T.-W. Outcomes for Patients with Diabetic Foot Ulcers Following Transition from Medicaid to Commercial Insurance. Diabetology 2024, 5, 356-364. https://doi.org/10.3390/diabetology5030027
Kwon K, Brown TA, Arias Aristizábal JC, Armstrong DG, Tan T-W. Outcomes for Patients with Diabetic Foot Ulcers Following Transition from Medicaid to Commercial Insurance. Diabetology. 2024; 5(3):356-364. https://doi.org/10.3390/diabetology5030027
Chicago/Turabian StyleKwon, KiBeom, Taylor A. Brown, Juan C. Arias Aristizábal, David G. Armstrong, and Tze-Woei Tan. 2024. "Outcomes for Patients with Diabetic Foot Ulcers Following Transition from Medicaid to Commercial Insurance" Diabetology 5, no. 3: 356-364. https://doi.org/10.3390/diabetology5030027
APA StyleKwon, K., Brown, T. A., Arias Aristizábal, J. C., Armstrong, D. G., & Tan, T. -W. (2024). Outcomes for Patients with Diabetic Foot Ulcers Following Transition from Medicaid to Commercial Insurance. Diabetology, 5(3), 356-364. https://doi.org/10.3390/diabetology5030027