Postharvest Authentication of Potato Cultivars Using Machine Learning to Provide High-Quality Products †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Liao, Q.; Ma, L.; Luo, W.; Xiong, X.; Luo, Y.; Yang, X.; Du, C.; He, Y.; Li, X.; et al. Features and genetic basis of chlorogenic acid formation in diploid potatoes. Food Chem. Mol. Sci. 2021, 3, 100039. [Google Scholar] [CrossRef] [PubMed]
- Kasampalis, D.S.; Tsouvaltzis, P.; Ntouros, K.; Gertsis, A.; Moshou, D.; Siomos, A.S. Rapid Nondestructive Postharvest Potato Freshness and Cultivar Discrimination Assessment. Appl. Sci. 2021, 11, 2630. [Google Scholar] [CrossRef]
- Pardo, J.E.; Alvarruiz, A.; Perez, J.I.; Gomez, R.; Varon, R. Physical-chemical and sensory quality evaluation of potato varieties (Solanum tuberosum L.). J. Food Qual. 2000, 23, 149–160. [Google Scholar] [CrossRef]
- Mbougueng, P.D.; Dzudie, T.; Scher, J.; Tchiégang, C. Physicochemical and functional properties of some cultivars of Irish potato and cassava starches. J. Food Technol. 2008, 6, 139–146. [Google Scholar]
- Yamamoto, K.; Ninomiya, S.; Kimura, Y.; Hashimoto, A.; Yoshioka, Y.; Kameoka, T. Strawberry cultivar identification and quality evaluation on the basis of multiple fruit appearance features. Comput. Electron. Agric. 2015, 110, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food Bioprocess Technol. 2011, 4, 487–504. [Google Scholar]
- Brosnan, T.; Sun, D.-W. Improving quality inspection of food products by computer vision—A review. J. Food Eng. 2004, 61, 3–16. [Google Scholar] [CrossRef]
- Oishi, Y.; Habaragamuwa, H.; Zhang, Y.; Sugiura, R.; Asano, K.; Akai, K.; Shibata, H.; Fujimoto, T. Automated abnormal potato plant detection system using deep learning models and portable video cameras. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102509. [Google Scholar] [CrossRef]
- Przybył, K.; Górna, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Janczak, D.; et al. The recognition of potato varieties using neural image analysis method. In Proceedings of the Seventh International Conference on Digital Image Processing: ICDIP 2015, Proc of SPIE, Los Angeles, CA, USA, 9–10 April 2015 ; Volume 9631, p. 963116. [Google Scholar]
- Azizi, A.; Abbaspour-Gilandeh, Y. Identifying Irregular Potatoes by Developing an Intelligent Algorithm Based on Image Processing. Tarim Bilimleri Derg. J. Agric. Sci. 2016, 22, 32–41. [Google Scholar]
- Ropelewska, E. Effect of boiling on classification performance of potatoes determined by computer vision. Eur. Food Res. Technol. 2021, 247, 807–817. [Google Scholar] [CrossRef]
- Szczypinski, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Meth. Prog. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; The University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Witten, I.H.; Frank, E. Data mining. In Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
Classifier | Average Accuracy (%) | TP Rate | FP Rate | Precision | F-Measure | ROC Area |
---|---|---|---|---|---|---|
(Weighted Average) | ||||||
IBk | 99 | 0.987 | 0.007 | 0.987 | 0.987 | 0.990 |
Multilayer Perceptron | 98 | 0.980 | 0.010 | 0.980 | 0.980 | 1.000 |
PART | 97 | 0.973 | 0.013 | 0.974 | 0.973 | 0.980 |
J48 | 97 | 0.973 | 0.013 | 0.974 | 0.973 | 0.981 |
LMT | 97 | 0.973 | 0.013 | 0.974 | 0.973 | 0.999 |
Random Forest | 97 | 0.967 | 0.017 | 0.967 | 0.967 | 0.997 |
Logistic | 97 | 0.967 | 0.017 | 0.968 | 0.967 | 0.986 |
Bayes Net | 96 | 0.960 | 0.020 | 0.960 | 0.960 | 0.997 |
Logit Boost | 95 | 0.947 | 0.027 | 0.947 | 0.947 | 0.991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E. Postharvest Authentication of Potato Cultivars Using Machine Learning to Provide High-Quality Products. Chem. Proc. 2022, 10, 30. https://doi.org/10.3390/IOCAG2022-12285
Ropelewska E. Postharvest Authentication of Potato Cultivars Using Machine Learning to Provide High-Quality Products. Chemistry Proceedings. 2022; 10(1):30. https://doi.org/10.3390/IOCAG2022-12285
Chicago/Turabian StyleRopelewska, Ewa. 2022. "Postharvest Authentication of Potato Cultivars Using Machine Learning to Provide High-Quality Products" Chemistry Proceedings 10, no. 1: 30. https://doi.org/10.3390/IOCAG2022-12285
APA StyleRopelewska, E. (2022). Postharvest Authentication of Potato Cultivars Using Machine Learning to Provide High-Quality Products. Chemistry Proceedings, 10(1), 30. https://doi.org/10.3390/IOCAG2022-12285