Zn Nutrition of Vitis vinifera White Grapes: Characterization of Antagonistic and Synergistic Interactions by µEDXRF Tissue Analyses †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Quantification of Nutrients in Grapes and Accumulation Level in Grape Tissues
2.3. Physicochemical Parameter of Grapes
2.4. Statistical Analysis
3. Results
3.1. Quantification of Nutrients in Grapes Flesh and Seed
3.2. Density
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gödecke, T.; Stein, A.J.; Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Secur. 2018, 17, 21–29. [Google Scholar] [CrossRef]
- Coelho, A.R.F.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Caleiro, J.; Simões, M.; Kullberg, J.; Legoinha, P.; Brito, M.; et al. Can Foliar Pulverization with CaCl2 and Ca (NO3) 2 Trigger Ca Enrichment in Solanum tuberosum L. Tubers? Plants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, C.C.; Coelho, A.R.F.; Luís, I.C.; Marques, A.C.; Daccak, D.; Simões, M.; Reboredo, F.; Silva, M.M.; Pessoa, M.F.; Galhano, C.; et al. A Technological workflow for Ca enrichment in rocha pears: Implication in quality. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021), Leiria, Portugal, 10–12 May 2021; da Costa Sanches Galvão, J.R., Galvão, J., Brito, P., dos Santos, F., Craveiro, F., Almeida, H., Vasco, J., Neves, L., Gomes, R., Mourato, S., et al., Eds.; Springer Nature: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Sathishkumar, A.; Sakthivel, N.; Subramanian, E.; Rajesh, P. Productivity of field crops as influenced by foliar spray of nutrients: A review. Agric. Rev. 2021, 41, 146–152. [Google Scholar] [CrossRef]
- Brunetto, G.; Melo, G.W.B.D.; Toselli, M.; Quartieri, M.; Tagliavini, M. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Rev. Bras. Frutic. 2015, 37, 1089–1104. [Google Scholar] [CrossRef] [Green Version]
- Song, C.Z.; Liu, M.Y.; Meng, J.F.; Chi, M.; Xi, Z.M.; Zhang, Z.W. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil. Molecules 2015, 20, 2536–2554. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A.; Sari, G. Zinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition in grapevines (Vitis vinifera L.). Sci. Hortic. 2019, 244, 61–67. [Google Scholar] [CrossRef]
- Jurowski, K.; Szewczyk, B.; Nowak, G.; Piekoszewski, W. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J. Biol. Inorg. Chem. 2014, 19, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc enrichment in two contrasting genotypes of Triticum aestivum L. grains: Interactions between edaphic conditions and foliar fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef]
- Fu, X.Z.; Xing, F.; Cao, L.; Chun, C.P.; Ling, L.L.; Jiang, C.L.; Peng, L.Z. Effects of foliar application of various zinc fertilizers with organosilicone on correcting citrus zinc deficiency. HortScience 2016, 51, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Toor, M.D.; Adnan, M.; Rehman, F.; Tahir, R.; Saeed, M.S.; Khan, A.U.; Pareek, V. Nutrients and Their Importance in Agriculture Crop Production; A Review. Ind. J. Pure Appl. Biosci. 2021, 9, 1–6. [Google Scholar] [CrossRef]
- Palani, V.; Raju, I. Synergistic and Antagonistic Interactions of Calcium with Other Nutrients in Soil and Plants. SSRN 2019, 1–7. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient interactions in crop plants. J Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction Between Macro-and Micro-Nutrients in Plants. Front. Plant Sci. 2021, 12, 753. [Google Scholar] [CrossRef]
- Marques, A.C.; Lidon, F.C.; Coelho, A.R.F.; Pessoa, C.C.; Luís, I.C.; Campos, P.S.; Simões, M.; Almeida, A.S.; Pessoa, M.F.; Galhano, C.; et al. Effect of rice grain (Oryza sativa L.) enrichment with selenium on foliar leaf gas exchanges and accumulation of nutrients. Plants 2021, 10, 288. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.R.; Galavi, M.; Rezaei, M. The interaction of zinc with other elements in plants: A review. Intl. J. Agri. Crop Sci. 2012, 4, 1881–1884. [Google Scholar]
- de Souza Júnior, J.O.; da Silveira, F.G.F.; dos Santos, R.O.; Neves, J.C.L. Zinc fertilizers and additives for foliar fertilization of cocoa seedlings. J. Agric. Sci. 2019, 11, 471–478. [Google Scholar] [CrossRef]
- Wang, S.; Li, M.; Liu, K.; Tian, X.; Li, S.; Chen, Y.; Jia, Z. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality. PLoS ONE 2017, 12, e0181276. [Google Scholar] [CrossRef] [Green Version]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Rietra, R.P.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef] [Green Version]
- Stepien, A.; Wojtkowiak, K. Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chilean J. Agric. Res. 2016, 76, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Zhao, J.; Lu, L.; Brown, P.; Guo, J.; Tian, S. Penetration of foliar-applied Zn and its impact on apple plant nutrition status: In vivo evaluation by synchrotron-based X-ray fluorescence microscopy. Hortic. Res. 2020, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Njira, K.O.; Nabwami, J. A review of effects of nutrient elements on crop quality. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9777–9793. [Google Scholar] [CrossRef]
- Letchov, G.; Roychev, V. Growth kinetics of grape berry density (Vitis vinifera L. ‘Black Corinth’). Vitis 2017, 56, 155–159. [Google Scholar] [CrossRef]
- Rolle, L.; Torchio, F.; Giacosa, S.; Segade, S.R. Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chem. 2015, 173, 105–113. [Google Scholar] [CrossRef] [PubMed]
Micronutrient (Seed) | ||||
Sample | Zn | Fe | Mn | P |
Control | 24.6 ± 1.23 c | 91.6 ± 4.58 a | 8.22 ± 0.41 c | 0.00 ± 0.00 c |
ZnO 30% | 37.1 ± 1.85 b | 106 ± 5.31 a | 14.8 ± 0.74 b | 1148 ± 57.4 b |
ZnO 60% | 44.7 ± 2.24 a | 105 ± 5.24 a | 35.9 ± 1.79 a | 3403 ± 170 a |
Micronutrient (Flesh) | ||||
Control | 23.4 ± 1.17 b | 91.2 ± 4.56 c | 8.66 ± 0.43 c | 0.00 ± 0.00 c |
ZnO 30% | 54.4 ± 2.72 a | 278 ± 13.9 a | 27.4 ± 1.37 b | 2662 ± 133 a |
ZnO 60% | 59.4 ± 2.97 a | 228 ± 11.4 b | 51.8 ± 2.59 a | 2203 ± 110 b |
Macronutrient (Seed) | |||
Sample | Ca | K | Mg |
Control | 0.82 ± 0.04 c | 6.11 ± 0.31 ab | 12.4 ± 0.62 a |
ZnO 30% | 2.98 ± 0.15 a | 6.40 ± 0.32 a | 0.39 ± 0.02 c |
ZnO 60% | 1.88 ± 0.09 b | 5.16 ± 0.26 b | 2.78 ± 0.14 b |
Macronutrient (Flesh) | |||
Control | 0.35 ± 0.02 c | 5.44 ± 0.27 c | 10.0 ± 0.50 a |
ZnO 30% | 1.89 ± 0.09 a | 15.4 ± 0.77 a | 5.84 ± 0.29 b |
ZnO 60% | 1.24 ± 0.06 b | 10.9 ± 0.55 b | 5.51 ± 0.28 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daccak, D.; Pessoa, C.C.; Luís, I.C.; Marques, A.C.; Coelho, A.R.F.; Ramalho, J.C.; Semedo, J.N.; Guerra, M.; Leitão, R.G.; Campos, P.S.; et al. Zn Nutrition of Vitis vinifera White Grapes: Characterization of Antagonistic and Synergistic Interactions by µEDXRF Tissue Analyses. Chem. Proc. 2022, 10, 47. https://doi.org/10.3390/IOCAG2022-12317
Daccak D, Pessoa CC, Luís IC, Marques AC, Coelho ARF, Ramalho JC, Semedo JN, Guerra M, Leitão RG, Campos PS, et al. Zn Nutrition of Vitis vinifera White Grapes: Characterization of Antagonistic and Synergistic Interactions by µEDXRF Tissue Analyses. Chemistry Proceedings. 2022; 10(1):47. https://doi.org/10.3390/IOCAG2022-12317
Chicago/Turabian StyleDaccak, Diana, Cláudia Campos Pessoa, Inês Carmo Luís, Ana Coelho Marques, Ana Rita F. Coelho, José C. Ramalho, José N. Semedo, Mauro Guerra, Roberta G. Leitão, Paula Scotti Campos, and et al. 2022. "Zn Nutrition of Vitis vinifera White Grapes: Characterization of Antagonistic and Synergistic Interactions by µEDXRF Tissue Analyses" Chemistry Proceedings 10, no. 1: 47. https://doi.org/10.3390/IOCAG2022-12317
APA StyleDaccak, D., Pessoa, C. C., Luís, I. C., Marques, A. C., Coelho, A. R. F., Ramalho, J. C., Semedo, J. N., Guerra, M., Leitão, R. G., Campos, P. S., Pais, I. P., Silva, M. M., Reboredo, F. H., Simões, M., Pessoa, M. F., Legoinha, P., & Lidon, F. C. (2022). Zn Nutrition of Vitis vinifera White Grapes: Characterization of Antagonistic and Synergistic Interactions by µEDXRF Tissue Analyses. Chemistry Proceedings, 10(1), 47. https://doi.org/10.3390/IOCAG2022-12317