Towards Smart Big Weather Data Management †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Proposed Smart Weather Data Management Platform
2.2.1. Overview
2.2.2. Forecasting Service
2.2.3. Weather Data Analysis and Visualization Service
3. Results and Discussion
3.1. Univariate Time Series Forecasting Service
3.2. Estimation of Climatic Parameters Using Machine Learning
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wade, M.; Hoelle, J.; Patnaik, R. Impact of Industrialization on Environment and Sustainable Solutions—Reflections from a South Indian Region. IOP Conf. Ser. Earth Environ. Sci. 2018, 120, 012016. [Google Scholar] [CrossRef]
- Bongaarts, J. Human population growth and the demographic transition. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisvold, G.; Sanchez, C.; Gollehon, N.; Megdal, S.B.; Brown, P. Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA. Sustainability 2018, 10, 1548. [Google Scholar] [CrossRef] [Green Version]
- Nafchi, R.A. Evaluation of the Efficiency of the Micro-irrigation Systems in Gardens of Chaharmahal and Bakhtiari Province of Iran. Int. J. Agric. Econ. 2021, 6, 106. [Google Scholar] [CrossRef]
- Math, R.K.M.; Dharwadkar, N.V. IoT Based low-cost weather station and monitoring system for precision agriculture in India. In Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 30–31 August 2018; pp. 81–86. [Google Scholar] [CrossRef]
- Majumdar, P.; Mitra, S. IoT and Machine Learning-Based Approaches for Real Time Environment Parameters Monitoring in Agriculture: An Empirical Review. In Agricultural Informatics: Automation Using the IoT and Machine Learning; Choudhury, A., Biswas, A., Prateek, M., Chakrabarti, A., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2021; Chapter 5; pp. 89–115. [Google Scholar] [CrossRef]
- Kumar, S.; Ansari, M.A.; Pandey, S.; Tripathi, P.; Singh, M. Weather Monitoring System Using Smart Sensors Based on IoT. Lect. Notes Netw. Syst. 2020, 106, 351–363. [Google Scholar] [CrossRef]
- Kodali, R.K.; Mandal, S. IoT based weather station. In Proceedings of the 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 16–17 December 2016; pp. 680–683. [Google Scholar] [CrossRef]
- Mittal, Y.; Mittal, A.; Bhateja, D.; Parmaar, K.; Mittal, V.K. Correlation among environmental parameters using an online Smart Weather Station System. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015. [Google Scholar] [CrossRef]
- Djordjević, M.; Jovičić, B.; Marković, S.; Paunović, V.; Danković, D. A smart data logger system based on sensor and Internet of Things technology as part of the smart faculty. J. Ambient Intell. Smart Environ. 2020, 12, 359–373. [Google Scholar] [CrossRef]
- Djordjevic, M.; Dankovic, D. A smart weather station based on sensor technology. Facta Univ. Ser. Electron. Energetic 2019, 32, 195–210. [Google Scholar] [CrossRef] [Green Version]
- National Imagery and Mapping Agency. Department of Defense World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems, 2nd ed.; National Imagery and Mapping Agency: St. Louis, MO, USA, 1991. [Google Scholar]
- Er-Raki, S.; Chehbouni, A.; Duchemin, B. Combining Satellite Remote Sensing Data with the FAO-56 Dual Approach for Water Use Mapping In Irrigated Wheat Fields of a Semi-Arid Region. Remote Sens. 2010, 2, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Belaqziz, S.; Khabba, S.; Kharrou, M.H.; Bouras, E.H.; Er-Raki, S.; Chehbouni, A. Optimizing the Sowing Date to Improve Water Management and Wheat Yield in a Large Irrigation Scheme, through a Remote Sensing and an Evolution Strategy-Based Approach. Remote Sens. 2021, 13, 3789. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Tiles (C) Esri—Source: Esri, USGS | GEOMATIC, Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, © OpenStreetMap contributors, HERE, Garmin, FAO, NOAA, USGS | Earthstar Geographics, and the GIS User Community.
- Le Page, M.; Toumi, J.; Khabba, S.; Hagolle, O.; Tavernier, A.; Kharrou, M.H.; Er-Raki, S.; Huc, M.; Kasbani, M.; Moutamanni, A.E.; et al. A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco. Remote Sens. 2014, 6, 11182–11203. [Google Scholar] [CrossRef] [Green Version]
- Er-Raki, S.; Chehbouni, A.; Khabba, S.; Simonneaux, V.; Jarlan, L.; Ouldbba, A.; Rodriguez, J.C.; Allen, R. Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters? J. Arid Environ. 2010, 74, 1587–1596. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- El Hachimi, C.; Belaqziz, S.; Khabba, S.; Chehbouni, A. Towards precision agriculture in Morocco: A machine learning approach for recommending crops and forecasting weather. In Proceedings of the 2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA), Marrakech, Morocco, 29–30 June 2021; pp. 88–95. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, hare soil and grass. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- El Hachimi, C.; Belaqziz, S.; Khabba, S.; Chehbouni, A. Data Science Toolkit: An all-in-one python library to help researchers and practitioners in implementing data science-related algorithms with less effort. Softw. Impacts 2022, 12, 100240. [Google Scholar] [CrossRef]
Variables | Description | Unit |
---|---|---|
R3_Dv | Wind direction | Degree |
R3_Hr | Relative humidity | No unit |
R3_Rg | Global solar radiation | W m |
R3_Tair | Air temperature | °C |
R3_Vv | Wind speed | m s |
R3_P30m | Rainfall | mm |
Metric / Parameter | T | R | H | Wind Speed |
---|---|---|---|---|
R | 0.82 | 0.83 | 0.48 | 0.18 |
RMSE | 3.61 | 114.23 | 16.73 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
EL Hachimi, C.; Belaqziz, S.; Khabba, S.; Chehbouni, A. Towards Smart Big Weather Data Management. Chem. Proc. 2022, 10, 54. https://doi.org/10.3390/IOCAG2022-12240
EL Hachimi C, Belaqziz S, Khabba S, Chehbouni A. Towards Smart Big Weather Data Management. Chemistry Proceedings. 2022; 10(1):54. https://doi.org/10.3390/IOCAG2022-12240
Chicago/Turabian StyleEL Hachimi, Chouaib, Salwa Belaqziz, Saïd Khabba, and Abdelghani Chehbouni. 2022. "Towards Smart Big Weather Data Management" Chemistry Proceedings 10, no. 1: 54. https://doi.org/10.3390/IOCAG2022-12240
APA StyleEL Hachimi, C., Belaqziz, S., Khabba, S., & Chehbouni, A. (2022). Towards Smart Big Weather Data Management. Chemistry Proceedings, 10(1), 54. https://doi.org/10.3390/IOCAG2022-12240