Preparation of Ceramic Granules Enriched with Silicon Extracted from Reeds †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microwave-Assisted Extraction of Silicon Species from Reeds
2.3. Element Analysis Using ICP-OES
2.4. Enrichment of Ceramic Granules with Silicon
2.5. FT-IR Spectroscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wails, C.N.; Baker, K.; Blackburn, R.; Del Vallé, A.; Heise, J.; Herakovich, H.; Holthuijzen, W.A.; Nissenbaum, M.P.; Rankin, L.; Savage, K.; et al. Assessing changes to ecosystem structure and function following invasion by Spartina alterniflora and Phragmites australis: A meta-analysis. Biol. Invasions 2021, 23, 2695–2709. [Google Scholar] [CrossRef]
- Oteman, B.; Scrieciu, A.; Bouma, T.J.; Stanica, A.; van der Wal, D. Indicators of Expansion and Retreat of Phragmites Based on Optical and Radar Satellite Remote Sensing: A Case Study on the Danube Delta. Wetlands 2021, 41, 72. [Google Scholar] [CrossRef]
- Dragoni, F.; Giannini, V.; Ragaglini, G.; Bonari, E.; Silvestri, N. Effect of harvest time and frequency on biomass quality and biomethane potential of common reed (Phragmites australis) under paludiculture conditions. Bioenergy Res. 2017, 10, 1066–1078. [Google Scholar] [CrossRef]
- Ehrlich, H.; Demadis, K.D.; Pokrovsky, O.S.; Koutsoukos, P.G. Modern views on desilicification: Biosilica and abiotic silica dissolution in natural and artificial environments. Chem. Rev. 2010, 110, 4656–4689. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu-Aruxandei, D.; Oancea, F. Closing the Nutrient Loop—The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. Int. J. Environ. Res. Public Health 2023, 20, 2096. [Google Scholar] [PubMed]
- Li, D.; Joo, Y.K.; Christians, N.E.; Minner, D.D. Inorganic Soil Amendment Effects on Sand-Based Sports Turf Media. Crop Sci. 2000, 40, 1121–1125. [Google Scholar] [CrossRef]
- Raduly, O.C.; Fazakas, J.; Constantinescu-Aruxandei, D.; Benedek, C.; Avram-Deșliu, M.; Fazakas, E.; Oancea, F. Porous ceramic granules as inorganic soil conditioner. Sci. Bull. Ser. F. Biotechnol. 2021, 25, 32–41. [Google Scholar]
- Roşu, C.; Piştea, I.C.; Oancea, F.; Jozsef, F.; Roba, C.A. The study of biostimulating effect of porous ceramics functionalized with polyoxometalates. Int. Multidiscip. Sci. GeoConference: SGEM 2018, 18, 745–751. [Google Scholar]
- Pargoletti, E.; Sanarica, L.; Ceruti, M.; Elli, F.; Pisarra, C.; Cappelletti, G. A comprehensive study on the effect of bentonite fining on wine charged model molecules. Food Chem. 2021, 338, 127840. [Google Scholar] [CrossRef]
- Das, D.; Dakshinamurti, C. Bentonite as a soil conditioner. Soil Cond. 1975, 7, 65–76. [Google Scholar]
- Zhang, H.; Chen, W.; Zhao, B.; Phillips, L.A.; Zhou, Y.; Lapen, D.R.; Liu, J. Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields. Appl. Soil Ecol. 2020, 146, 103378. [Google Scholar] [CrossRef]
- Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 641–664. [Google Scholar] [CrossRef] [PubMed]
- Fazakas, E.; Muntean, M.; Fazakas, J.; Muntean, O. Porous nutritive ceramic granules. Rev. Româna De Mater. 2007, 37, 205–210. [Google Scholar]
- Tulan, E.; Reinhard, F.S.; Tari, G.; Witkowski, J.; Tămaș, D.M.; Horvat, A.; Tămaș, A. Hydrocarbon source rock potential and paleoenvironment of lower Miocene diatomites in the Eastern Carpathians Bend Zone (Sibiciu de Sus, Romania). Geol. Carpathica. 2020, 71, 424–443. [Google Scholar] [CrossRef]
- Braune, C.; Lieberei, R.; Steinmacher, D.; Kaiser, T.M. A simple microwave extraction method for the isolation and identification of plant opal phytoliths. Biologia 2012, 67, 927–930. [Google Scholar] [CrossRef]
- EN ISO 11885:2009; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). ISO: Geneva, Switzerland, 2009.
- Capra, L.; Manolache, M.; Ion, I.; Stoica, R.; Ion, A.C. Validation and Optimization of a Method for Sb Determination from Bottled Natural Mineral Waters by ICP-OES. Rev. Chim. 2018, 69, 2102–2106. [Google Scholar] [CrossRef]
- Capră, L.; Stoica, R.; Ivan, G.-R.; Șuică-Bunghez, I.-R.; Oancea, F. The Optimization and Validation of the Method for the Determination of Micronutrients in Organic Fertilizers by Inductively Coupled Plasma Optical Emission Spectrometry. Chem. Proc. 2023, 13, 10. [Google Scholar]
- Coradin, T.; Durupthy, O.; Livage, J. Interactions of amino-containing peptides with sodium silicate and colloidal silica: A biomimetic approach of silicification. Langmuir 2002, 18, 2331–2336. [Google Scholar] [CrossRef]
- Ollendorf, A.L.; Mulholland, S.C.; Rapp, G. Phytolith Analysis as a Means of Plant Identification: Arundo donax and Phragmites communis. Ann. Bot. 1988, 61, 209–214. [Google Scholar] [CrossRef]
- Hongyan, L.; Dongmei, J.; Lidan, L.; Zhuo, G.; Guizai, G.; Lianxuan, S.; Jixun, G.; Zhihe, Q. The research on phytoliths size variation characteristics in Phragmites communis under warming conditions. Silicon 2018, 10, 445–454. [Google Scholar] [CrossRef]
- Zexer, N.; Kumar, S.; Elbaum, R. Silica deposition in plants: Scaffolding the mineralization. Ann. Bot. 2023, 131, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Huygens, D.; Saveyn, H.G.M.; Tonini, D.; Eder, P.D.S.L. Technical Proposals for Selected New Fertilising Materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009); JRC117856; JRC: Luxembourg, 2019. [Google Scholar]
- Benkacem, T.; Hamdi, B.; Chamayou, A.; Balard, H.; Calvet, R. Physicochemical characterization of a diatomaceous upon an acid treatment: A focus on surface properties by inverse gas chromatography. Powder Technol. 2016, 294, 498–507. [Google Scholar] [CrossRef]
- Sun, N.; Zhang, P.C.; Qiu, K.H.; Li, J.F.; Liu, X.F.; Qiu, Y.C.; Yang, J.C.; Wang, X.; Xian, L.J. Preparation of high purity spherical silica powder from silica fume. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2015; pp. 298–302. [Google Scholar]
- Islam, K.N.; Bakar, M.Z.B.A.; Noordin, M.M.; Hussein, M.Z.B.; Abd Rahman, N.S.B.; Ali, M.E. Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara granosa). Powder Technol. 2011, 213, 188–191. [Google Scholar] [CrossRef]
- Aroke, U.; Abdulkarim, A.; Ogubunka, R. Fourier-transform infrared characterization of kaolin, granite, bentonite and barite. ATBU J. Environ. Technol. 2013, 6, 42–53. [Google Scholar]
- Hernández-Ortiz, M.; Hernández-Padrón, G.; Bernal, R.; Cruz-Vázquez, C.; Castaño, V. Nanocrystalline mimetic opals: Synthesis and comparative characterization vs. natural stones. Int. J. Basic Appl. Sci 2015, 4, 238–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Wu, Z.; Zhang, Y. Thermal behavior analysis of two bentonite samples selected from China. J. Therm. Anal. Calorim. 2015, 121, 1287–1295. [Google Scholar] [CrossRef]
- Alabarse, F.G.; Conceição, R.V.; Balzaretti, N.M.; Schenato, F.; Xavier, A.M. In-situ FTIR analyses of bentonite under high-pressure. Appl. Clay Sci. 2011, 51, 202–208. [Google Scholar] [CrossRef]
Sample | Total Si, % (w/w) | Sediment (% of Initial Sample) |
---|---|---|
S1.1 | 0.073 | 86.02 |
S2.1 | 0.090 | 87.53 |
S1.2 | 0.038 | - |
S2.2 | 0.025 | - |
S1.3 | 0.177 | 88.64 |
S2.3 | 0.174 | 88.82 |
S2.4 | 0.205 | 92.44 |
Analyte | Concentration | Unit |
---|---|---|
Si (λ = 251.611 nm) | 0.135 | % (w/w) |
Ca (λ = 317.933 nm) | 418 | mg/Kg |
Mg (λ = 285.213 nm) | 297 | mg/Kg |
P (λ = 213.617 nm) | 159 | mg/Kg |
Na (λ = 589.592 nm) | 872 | mg/kg |
K (λ = 766.490 nm) | 0.131 | % (w/w) |
Cu (λ = 327.393 nm) | <2.4 * | mg/Kg |
Cd (λ = 214.440 nm) | <1.8 * | mg/Kg |
Pb (λ = 220.353 nm) | <2.6 * | mg/Kg |
Cr (λ = 267.716 nm) | <0.9 * | mg/Kg |
Ni (λ = 231.604 nm) | <1.3 * | mg/Kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deșliu-Avram, M.; Capră, L.; Tudor, I.; Lupu, C.; Constantinescu-Aruxandei, D.; Raduly, O.C.; Pătrașcu, M.; Oancea, F. Preparation of Ceramic Granules Enriched with Silicon Extracted from Reeds. Chem. Proc. 2023, 13, 31. https://doi.org/10.3390/chemproc2023013031
Deșliu-Avram M, Capră L, Tudor I, Lupu C, Constantinescu-Aruxandei D, Raduly OC, Pătrașcu M, Oancea F. Preparation of Ceramic Granules Enriched with Silicon Extracted from Reeds. Chemistry Proceedings. 2023; 13(1):31. https://doi.org/10.3390/chemproc2023013031
Chicago/Turabian StyleDeșliu-Avram, Mălina, Luiza Capră, Ioana Tudor, Carmen Lupu, Diana Constantinescu-Aruxandei, Orsolya Csilla Raduly, Mariana Pătrașcu, and Florin Oancea. 2023. "Preparation of Ceramic Granules Enriched with Silicon Extracted from Reeds" Chemistry Proceedings 13, no. 1: 31. https://doi.org/10.3390/chemproc2023013031
APA StyleDeșliu-Avram, M., Capră, L., Tudor, I., Lupu, C., Constantinescu-Aruxandei, D., Raduly, O. C., Pătrașcu, M., & Oancea, F. (2023). Preparation of Ceramic Granules Enriched with Silicon Extracted from Reeds. Chemistry Proceedings, 13(1), 31. https://doi.org/10.3390/chemproc2023013031