Molecular Modelling and In Vitro Research of New Substances for the Targeted Stimulation of AQP3 in Skin †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Ligand and Target Preparation
2.3. Molecular Docking of Phytochemicals with AQP3
2.4. Drug-Likeness Activity
2.5. In Vitro Research of the Amount of AQP3 in Epidermal Cells
3. Results and Discussion
3.1. Molecular Docking with AQP3
3.2. Drug-Likeness Activity
3.3. In Vitro Research of the Amount of AQP3 in Epidermal Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Augustin, M.; Kirsten, N.; Körber, A.; Wilsmann-Theis, D.; Itschert, G.; Staubach-Renz, P.; Maul, J.T.; Zander, N. Prevalence, predictors and comorbidity of dry skin in the general population. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Pohar, R.; McCormack, S. Emollient Treatments for Atopic Dermatitis: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines [Internet]; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019.
- Tricarico, P.M.; Mentino, D.; De Marco, A.; Del Vecchio, C.; Garra, S.; Cazzato, G.; Foti, C.; Crovella, S.; Calamita, G. Aquaporins Are One of the Critical Factors in the Disruption of the Skin Barrier in Inflammatory Skin Diseases. Int. J. Mol. Sci. 2022, 23, 4020. [Google Scholar] [CrossRef] [PubMed]
- Bollag, W.B.; Aitkens, L.; White, J.; Hyndman, K.A. Aquaporin-3 in the epidermis: More than skin deep. Am. J. Physiol. Cell Physiol. 2020, 318, 1144–1153. [Google Scholar] [CrossRef]
- Ikarashi, N.; Kon, R.; Kaneko, M.; Mizukami, N.; Kusunoki, Y.; Sugiyama, K. Relationship between Aging-Related Skin Dryness and Aquaporins. Int. J. Mol. Sci. 2017, 18, 1559. [Google Scholar] [CrossRef] [PubMed]
- Boury-Jamot, M.; Sougrat, R.; Tailhardat, M.; Le Varlet, B.; Bonté, F.; Dumas, M.; Verbavatz, J.M. Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter? Biochim. Biophys. Acta 2006, 1758, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Zheng, X.; Zhong, X.; Shetty, A.K.; Elias, P.M.; Bollag, W.B. Aquaporin-3 in keratinocytes and skin: Its role and interaction with phospholipase D2. Arch. Biochem. Biophys. 2011, 508, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Ikarashi, N.; Ogiue, N.; Toyoda, E.; Kon, R.; Ishii, M.; Toda, T.; Aburada, T.; Ochiai, W.; Sugiyama, K. Gypsum fibrosum and its major component CaSO4 increase cutaneous aquaporin-3 expression levels. J. Ethnopharmacol. 2012, 139, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.-H.; Lee, A.-Y. Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J. Investig. Dermatol. 2010, 130, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, V.; Olala, L.O.; Kagha, K.; Pan, Z.Q.; Chen, X.; Yang, R.; Cline, A.; Helwa, I.; Marshall, L.; Kaddour-Djebbar, I.; et al. Regulation of the Glycerol Transporter, Aquaporin-3, by Histone Deacetylase-3 and p53 in Keratinocytes. J. Investig. Dermatol. 2017, 137, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Ma, T.; Verkman, A.S. Selectively reduced glycerol in skin of aquaporin-3 deficient mice may account for impaired skin hydration, elasticity and barrier recovery. J. Biol. Chem. 2002, 277, 46616–46621. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Yang, S.K.; Lai, K.S.; Lim, S.H.E. Essential Oils: The Ultimate Solution to Antimicrobial Resistance in Escherichia coli? In Recent Advances on Physiology, Pathogenesis and Biotechnological Applications, 1st ed.; Samie, A., Ed.; IntechOpen: London, UK, 2017; Volume 15, pp. 299–313. [Google Scholar]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Sousa Lobo, J.M. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef]
- Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020, 25, 1324. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.K.; Paal, M.C.; Donohue, T.M., Jr.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial Effects of Betaine: A Comprehensive Review. Biology 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Rose, P.W.; Hsu, C.N. Citing a Data Repository: A Case Study of the Protein Data Bank. PLoS ONE 2015, 28, 10. [Google Scholar] [CrossRef] [PubMed]
- Ionov, N.; Druzhilovskiy, D.; Filimonov, D.; Poroikov, V. Phyto4Health: Database of Phytocomponents from Russian Pharmacopoeia Plants. J. Chem. Inf. Model. 2023, 63, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
Compound | PASS Activities Type | Pa Value |
---|---|---|
Aloin | Antioxidant | 0.676 |
Anti-inflammatory | 0.674 | |
Immunosuppressant | 0.524 | |
Trimethylglycine | Antieczematic atopic | 0.806 |
Anti-psoriatic | 0.570 | |
Antioxidant | 0.259 |
Compound | AQP3, ng/mL | Changes Compared with the Negative Control, % |
---|---|---|
Negative control (purified water) | 5.58 ± 0.24 | - |
Aloe barbadensis leaf extract with aloin, 1.0 weight % | 6.73 ± 0.69 * | +20.61% * |
Trimethylglycine, 1.0 weight % | 6.58 ± 1.08 | +17.92% |
Aloe barbadensis leaf extract and trimethylglycine in a 1:1 mass ratio, 1.0 weight % | 12.21 ± 0.91 ** | +118.82% *** |
Glyceryl glucoside, 1.0 weight % | 6.89 ± 082 * | +23.48% * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filatov, V.; Varava, A.; Ilin, E. Molecular Modelling and In Vitro Research of New Substances for the Targeted Stimulation of AQP3 in Skin. Chem. Proc. 2023, 14, 51. https://doi.org/10.3390/ecsoc-27-16088
Filatov V, Varava A, Ilin E. Molecular Modelling and In Vitro Research of New Substances for the Targeted Stimulation of AQP3 in Skin. Chemistry Proceedings. 2023; 14(1):51. https://doi.org/10.3390/ecsoc-27-16088
Chicago/Turabian StyleFilatov, Viktor, Andrey Varava, and Egor Ilin. 2023. "Molecular Modelling and In Vitro Research of New Substances for the Targeted Stimulation of AQP3 in Skin" Chemistry Proceedings 14, no. 1: 51. https://doi.org/10.3390/ecsoc-27-16088
APA StyleFilatov, V., Varava, A., & Ilin, E. (2023). Molecular Modelling and In Vitro Research of New Substances for the Targeted Stimulation of AQP3 in Skin. Chemistry Proceedings, 14(1), 51. https://doi.org/10.3390/ecsoc-27-16088