Ugi-4CR/SN2-Cyclization Strategy for the One-Pot Synthesis of 2,5-Diketopiperazines †
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Information, Instrumentation, and Chemicals
3.2. General Procedure
3.3. Spectral Data
- 4-benzyl-1-(tert-butyl)-3-(4-nitrophenyl)piperazine-2,5-dione (19a).
- 4-benzyl-1-(tert-butyl)-3-(4-chlorophenyl)piperazine-2,5-dione (19b).
- 4-benzyl-1-(tert-butyl)-3-hexylpiperazine-2,5-dione (19c).
- 4-benzyl-1-cyclohexyl-3-(4-nitrophenyl)piperazine-2,5-dione (19d).
- 4-benzyl-1-cyclohexyl-3-(4-chlorophenyl)piperazine-2,5-dione (19e).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, J.; Yao, J.; Kong, J.; Yu, A.; Wei, J.; Dong, Y.; Song, R.; Shan, D.; Zhong, X.; Lv, F.; et al. 2,5-Diketopiperazines: A Review of Source, Synthesis, Bioactivity, Structure, and MS Fragmentation. Curr. Med. Chem. 2023, 30, 1060–1085. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.L.; Varejão, J.O.S.; de Souza, J.A.; de Carneiro, J.W.M.; Valdo, A.K.S.M.; Martins, F.T.; Ferreira, B.W.; Barreto, R.W.; da Silva, T.I.; Kohlhoff, M. 2,5-Diketopiperazines via Intramolecular N-Alkylation of Ugi Adducts: A Contribution to the Synthesis, Density Functional Theory Study, X-ray Characterization, and Potential Herbicide Application. J. Agric. Food Chem. 2022, 70, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
- Bojarska, J.; Mieczkowski, A.; Ziora, Z.M.; Skwarczynski, M.; Toth, I.; Shalash, A.O.; Parang, K.; El-Mowafi, S.A.; Mohammed, E.H.M.; Elnagdy, S. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, A.D. 2,5-diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Q.; Wang, M.-X. Multicomponent Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2015; pp. 1–12. [Google Scholar]
- Orru, R.V.A.; Ruijter, E. Synthesis of Heterocycles via Multicomponent Reactions I; Springer: Berlin/Heidelberg, Germany, 2010; pp. 99–107. [Google Scholar]
- Pharande, S.G.; Rentería-Gómez, M.A.; Gámez-Montaño, R. Mechanochemical IMCR and IMCR-Post Transformation Domino Strategies: Towards the Sustainable DOS of Dipeptide-like and Heterocyclic Peptidomimetics. New J. Chem. 2022, 46, 9298–9303. [Google Scholar] [CrossRef]
- Pharande, S.G.; Corrales Escobosa, A.R.; Gámez-Montaño, R. Endogenous Water-Triggered and Ultrasound Accelerated Synthesis of 1,5-Disubstituted Tetrazoles via a Solvent and Catalyst-Free Ugi-Azide Reaction. Green Chem. 2017, 19, 1259–1262. [Google Scholar] [CrossRef]
- Bohn, C.; Westermann, B.; Wessjohann, L. One-Pot Multicomponent Synthesis of N-Substituted Tryptophan-Derived Diketopiperazines. Synthesis 2008, 13, 2077–2082. [Google Scholar]
- Kaveti, B.; Ramírez-López, S.C.; Gámez Montaño, R. Ultrasound-Assisted Green One-Pot Synthesis of Linked Bis-Heterocycle Peptidomimetics via IMCR/Post-Transformation/Tandem Strategy. Tetrahedron Lett. 2018, 59, 4355–4358. [Google Scholar] [CrossRef]
| |||||
Entry | Solvent | Catalyst | Temperature | Time | Yield (%) |
1 | MeOH | InCl3 | r.t. | 24 h | 74 |
2 | EtOH | InCl3 | r.t. | 18 h | 70 |
| |||||
Entry | Solvent | Base | Temperature | Time | Yield |
3 | EtOH | KOH | r.t. | 1 h | Decomp |
4 | EtOH | Cs2CO3 | r.t. | 5 h | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Garcia, D.; Hernández, R.R.; Rentería-Gómez, M.A.; Gámez-Montaño, R. Ugi-4CR/SN2-Cyclization Strategy for the One-Pot Synthesis of 2,5-Diketopiperazines. Chem. Proc. 2023, 14, 93. https://doi.org/10.3390/ecsoc-27-16092
Garcia-Garcia D, Hernández RR, Rentería-Gómez MA, Gámez-Montaño R. Ugi-4CR/SN2-Cyclization Strategy for the One-Pot Synthesis of 2,5-Diketopiperazines. Chemistry Proceedings. 2023; 14(1):93. https://doi.org/10.3390/ecsoc-27-16092
Chicago/Turabian StyleGarcia-Garcia, Diana, Ricardo Ramírez Hernández, Manuel A. Rentería-Gómez, and Rocío Gámez-Montaño. 2023. "Ugi-4CR/SN2-Cyclization Strategy for the One-Pot Synthesis of 2,5-Diketopiperazines" Chemistry Proceedings 14, no. 1: 93. https://doi.org/10.3390/ecsoc-27-16092
APA StyleGarcia-Garcia, D., Hernández, R. R., Rentería-Gómez, M. A., & Gámez-Montaño, R. (2023). Ugi-4CR/SN2-Cyclization Strategy for the One-Pot Synthesis of 2,5-Diketopiperazines. Chemistry Proceedings, 14(1), 93. https://doi.org/10.3390/ecsoc-27-16092