Synthesis, Spectral Studies and Antimicrobial Activity of 2-Aryl-3-(2′-n-butyl-4′-chloro-1′-H,5′-imidazolyl)-quinoxazolines †
Abstract
:1. Introduction
2. Antimicrobial Activity
3. Experimental
3.1. Spectral Studies of Chalcone (1i)
- FT-IR (KBr) (cm−1): 2968 (CH str. asym); 2864 (CH str. sym); 3060 (CH str. aromatic); 1558 (C=C ring skeletal); 1166 (CH i.p. def); 751 (CH-str.def); 1220 (CN str.); 1515 (C=N str.); 3415 (NH str); 1600 (NH bending); 1653 (C=O str.); 1459 (CH=CH); 728 (CCl); 1250 (COC str.). 1H NMR (400 MHz, DMSO-d6) δ/ppm: 0.9 (t, 3H, -CH3); 1.2–1.3 (m, 2H, -CH2-CH3); 1.5–1.6 (m, 2H, -CH2-CH2-CH3); 2.6 (t, 2H, -CH2-CH2-CH2-CH3); 12.8 (s, 1H, -NH); 7.4 (d, 1H, -CH=CH-) 7.6 (d, 1H, -CH=CH-); 7.1 (d, 2H, Ar-H); 8.0 (d, 2H, Ar-H); 3.8 (s, 3H, -OCH3). Mass (m/z): 320, 318, 211, 183, 135, 107.
3.2. Spectral Studies of Methoxy Phenyl-Imidazolyl Quinoxazoline (2i)
- FT-IR (KBr) (cm−1): 2924 (CH str. Asym.); 2857 (CH str. Sym.); 1457 (CH str. def.); 3085 (CH str. aromatic); 1602 (C=C ring skeletal); 1168 (CH i.p. def.); 730 (CH o.o.p. str. def.); 1340 (CN str.); 1553 (C=N str.); 3313 (NH str.); 1653 (NH bending); 698 (CCl); 1252 (COC str.). 1H NMR (400 MHz, DMSO-d6) δ/ppm: 0.8–0.9 (t, 3H, -CH3); 1.3 (m, 2H, -CH2-CH3); 1.6 (m, 2H, -CH2-CH2-CH3); 2.6 (t, 2H, -CH2-CH2-CH2-CH3); 12.8 (s, 1H, -NH); 3.8 (s, 3H, -OCH3); 7.3–7.4 (d, 2H, Ar-H); 7.6 (d, 2H, Ar-H); 8.0 (d, 2H, Ar-H); 7.1 (d, 2H, Ar-H). Mass (m/z): 395, 393, 285, 157, 128, 107.
4. Materials and Method
4.1. Synthesis of Chalcone (1i)
4.2. Synthesis of Methoxy Phenyl-Imidazolyl Quinoxazoline (2i)
5. Results and Discussions
5.1. H NMR Spectra
- 1H NMR spectra of chalcone (1i) and 2-(4″-Methoxy phenyl)-3-(2′-n-butyl-4′-chloro-1′-H-imidazol-5′-yl)-quinoxazoline (2i) obtained in solvent DMSO-d6 are summarized in the experimental section. In 1H NMR spectra of chalcone (1i), the number of aromatic hydrogens atoms are 7-H (4″-methoxy phenyl), 1-H (1′-H-imidazol) and the number of aliphatic hydrogen atoms are 11-H (2′-n-butyl and prop-2-ene-1-one). Whereas in 1H NMR spectra of synthesized quinoxazoline derivative (2i), the number of aromatic hydrogen atoms are 11-H (7-H of 4″-methoxy phenyl and 4-H of quinoxazoline), 1-H (1′-H-imidazol) and the number of aliphatic hydrogen atoms are 9-H (2′-n-butyl). The peak of synthesized quinoxazolines is found in the range of 7.3 to 7.6 δ ppm. These hydrogen exhibit doublet of doublet that is not observed in chalcones spectra. The peaks of methoxy proton of the methoxy phenyl group in synthesized quinoxazoline and chalcone appeared at 3.8 δ ppm and the aromatic hydrogen atoms of phenyl protons from methoxy phenyl group appears in the range of 7.1 to 8.0 δ ppm. Two peaks of prop-2-ene-1-one of chalcone in the range of 7.4 to 7.6 δ ppm exhibits doublet splitting, which does not appear in the spectra of synthesized quinoxazoline, indicating the formation of quinoxazolines.
5.2. Fourier Transform Infrared Spectra
- Infrared spectral data of chalcone (1i) and synthesized quinoxazoline (2i) are expressed in the experimental section. The peaks of chalcone containing υ(CH=CH) group is observed at ~1459 cm−1, which is not found in the spectra of synthesized quinoxazoline, showing the formation of quinoxazoline from chalcone. The band of the C=C skeletal ring in chalcone is found at ~1558 cm−1, which is shifted to ~1602 cm−1 for synthesized quinoxazoline. The stretching band due to the carbonyl group (C=O) in chalcone is found at ~1653 cm−1, which is not found in the spectra of quinoxazoline, indicating the conversion of chalcone in a heterocyclic ring. Aromatic bending peaks (=C-H) of chalcone and synthesized quinoxazoline are observed in the range of 730 to 770 cm−1. The spectra of chalcone and synthesized quinoxazoline show bands in the range of 500 to 800 cm−1, 1050 to 1200 cm−1 and 3200 to 3500 cm−1 due to (C-Cl), (C-O-C str.) and (N-H str.), respectively. The υC–Har. stretching band of the chalcone is observed at 3060 cm−1 and transitioned to 3085 cm−1 in the quinoxazoline spectra.
5.3. Mass Spectra
- Mass spectral data of chalcone (1i) and synthesized quinoxazoline (2i) are expressed in the experimental section. The mass spectra of chalcone (1i) shows a molecular ion peak at 318 m/z due to [M]+ and 320 m/z due to [M + 2]. The peak at 211 m/z indicates the loss of 4-methoxy phenyl from chalcone. The peaks at 107 m/z, 135 m/z, and 183 m/z correspond to 4-methoxy phenyl, 4-methoxy phenone and butylchloroimidazolyl, respectively.
- The mass spectrum of the synthesized quinoxazoline (2i) compound gives molecular ion peaks at 393 m/z of [M]+ and 395 m/z of [M + 2], indicating that one chlorine atom is present in 2i. The loss of 4-methoxy phenyl attached to quinoxazoline gives a peak at 285 m/z. 2-n-butyl-4-chloro-1-H-imidazol-5-yl shows peaks at 157 m/z and 107 m/z due to its 4-mehoxy phenyl group. The peak at 128 m/z shows the fragment ion of quinoxazoline.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aichhorn, S.; Himmelsbach, M.; Schofberger, W. Synthesis of quinoxalines or quinolin-8-amines from N-propargyl aniline derivatives employing tin and indium chlorides. Org. Biomol. Chem. 2015, 13, 9373–9380. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.F. Chemistry, Synthesis, and Structure Activity Relationship of Anticancer quinoxalines. Chemistry 2023, 5, 2566–2587. [Google Scholar] [CrossRef]
- Kanwal, A.; Afzal, U.; Zubair, M.; Imran, M.; Rasool, N. Synthesis of anti-depressant molecules via metal-catalyzed reactions: A review. RSC Adv. 2024, 14, 6948–6971. [Google Scholar] [CrossRef]
- Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti-tuberculosis agents with pyrrolo [1,2-a] quinoxaline-based scaffold. Bioorganic Med. Chem. Lett. 2018, 28, 2084–2090. [Google Scholar] [CrossRef]
- Chawla, G.; Gupta, O.; Pradhan, T. A review on multipurpose potential of bioactive heterocycle quinoxaline. ChemistrySelect 2023, 8, e202301401. [Google Scholar] [CrossRef]
- Syam, Y.M.; Anwar, M.M.; El-Karim, S.S.A.; Elokely, K.M.; Abdelwahed, S.H. New quinoxaline-based derivatives as PARP-1 inhibitors: Design, synthesis, antiproliferative, and computational studies. Molecules 2022, 27, 4924. [Google Scholar] [CrossRef]
- Ghorab, M.M.; Abdel-Kader, M.S.; Alqahtani, A.S.; Soliman, A.M. Synthesis of some quinazolinones inspired from the natural alkaloid L-norephedrine as EGFR inhibitors and radiosensitizers. J. Enzym. Inhib. Med. Chem. 2021, 36, 218–238. [Google Scholar] [CrossRef]
- Guillon, J.; Savrimoutou, S.; Albenque-Rubio, S.; Pinaud, N.; Moreau, S.; Desplat, V. Synthesis, crystal structure and anti-leukemic activity of 1, 3-dihydro-1-{1-[4-(4-phenylpyrrolo [1, 2-a] quinoxalin-3-yl) benzyl] piperidin-4-yl}-2 H-benzimidazol-2-one. Molbank 2022, 2022, M1333. [Google Scholar] [CrossRef]
- Abulkhair, H.S.; Elmeligie, S.; Ghiaty, A.; El-Morsy, A.; Bayoumi, A.H.; Ahmed, H.E.A.; El-Adl, K.; Zayed, M.F.; Hassan, M.H.; Akl, E.N.; et al. In vivo-and in silico-driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Arch. Pharm. 2021, 354, 2000449. [Google Scholar] [CrossRef]
- Montana, M.; Montero, V.; Khoumeri, O.; Vanelle, P. quinoxaline derivatives as antiviral agents: A systematic review. Molecules 2020, 25, 2784. [Google Scholar] [CrossRef]
- Abdullahi, S.H.; Uzairu, A.; Danazumi, A.U.; Finbarrs-Bello, E.; Umar, A.B.; Shallangwa, G.A.; Uba, S. Computational design of quinoxaline molecules as VEGFR-2 inhibitors: QSAR modelling, pharmacokinetics, molecular docking, and dynamics simulation studies. Biocatal. Agric. Biotechnol. 2023, 51, 102787. [Google Scholar] [CrossRef]
- Goel, K.K.; Hussain, A.; Altamimi, M.A.; Rajput, S.K.; Sharma, P.P.; Kharb, R.; Mahdi, W.A.; Imam, S.S.; Alshehri, S.; Alnemer, O.A.; et al. Identification of potential antitubulin agents with anticancer assets from a series of imidazo [1,2-a] quinoxaline derivatives: In silico and in vitro approaches. Molecules 2023, 28, 802. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Dong, H.; Huang, J.; Zhang, S.; Niu, L.; Zhang, Y.; Wang, J. Synthesis and biological evaluation of N-substituted 3-oxo-1, 2, 3, 4-tetrahydro-quinoxaline-6-carboxylic acid derivatives as tubulin polymerization inhibitors. Eur. J. Med. Chem. 2018, 143, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.A.; Mohamed, M.F.A.; Omran, A.; Salah, H. Synthesis, EGFR-TK inhibition and anticancer activity of new quinoxaline derivatives. Synth. Commun. 2020, 50, 2924–2940. [Google Scholar] [CrossRef]
- El Newahie, A.M.S.; Nissan, Y.M.; Ismail, N.S.M.; El Ella, D.A.A.; Khojah, S.M.; Abouzid, K.A.M. Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers. Molecules 2019, 24, 1175. [Google Scholar] [CrossRef]
- Katariya, D.K.; Vyas, A.K.; Bhanderi, P.; Shah, P.M.; Khoyanee, A.; Mevada, B.; Shah, M.; Khunt, R. Unveiling Synthesis, Characterization, and Assessing Antimicrobial Efficacy of quinoxaline-Based Oxazole Derivatives. Russ. J. Bioorganic Chem. 2024, 50, 1573–1582. [Google Scholar] [CrossRef]
- Khatoon, H.; Malek, E.A.; Faudzi, S.M.; Rukayadi, Y. Synthesis of a series of quinoxaline derivatives and their antibacterial effectiveness against pathogenic bacteria. ChemistrySelect 2024, 9, e202305073. [Google Scholar] [CrossRef]
- Maltsev, D.V.; Skripka, M.O.; Spasov, A.A.; Vassiliev, P.M.; Perfiliev, M.A.; Divaeva, L.N.; Zubenko, A.A.; Morkovnik, A.S.; Klimenko, A.I.; Miroshnikov, M.V.; et al. Design, Synthesis and Pharmacological Evaluation of Novel C2,C3-quinoxaline Derivatives as Promising Anxiolytic Agents. Int. J. Mol. Sci. 2022, 23, 14401. [Google Scholar] [CrossRef]
- Bouali, N.; Hammouda, M.B.; Ahmad, I.; Ghannay, S.; Thouri, A.; Dbeibia, A.; Patel, H.; Hamadou, W.S.; Hosni, K.; Snoussi, M.; et al. Multifunctional derivatives of Spiropyrrolidine tethered Indeno-quinoxaline heterocyclic hybrids as potent antimicrobial, antioxidant and antidiabetic agents: Design, synthesis, in vitro and in silico approaches. Molecules 2022, 27, 7248. [Google Scholar] [CrossRef]
- Bhat, Z.R.; Kumar, M.; Sharma, N.; Yadav, U.P.; Singh, T.; Joshi, G.; Pujala, B.; Raja, M.; Chatterjee, J.; Tikoo, K.; et al. In Vivo Anticancer Evaluation of 6b, a Non-Covalent Imidazo [1, 2-a] quinoxaline-Based Epidermal Growth Factor Receptor Inhibitor against Human Xenograft Tumor in Nude Mice. Molecules 2022, 27, 5540. [Google Scholar] [CrossRef]
- Fan, D.; Liu, P.; Jiang, Y.; He, X.; Zhang, L.; Wang, L.; Yang, T. Discovery and SAR study of quinoxaline–arylfuran derivatives as a new class of antitumor agents. Pharmaceutics 2022, 14, 2420. [Google Scholar] [CrossRef]
- Patinote, C.; Deleuze-Masquéfa, C.; Kaddour, K.H.; Vincent, L.-A.; Larive, R.; Zghaib, Z.; Guichou, J.-F.; Assaf, M.D.; Cuq, P.; Bonnet, P.-A. Imidazo [1, 2-a] quinoxalines for melanoma treatment with original mechanism of action. Eur. J. Med. Chem. 2021, 212, 113031. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.K.; Chundawat, N.S.; Singh, G.P.; Padrón, J.M.; Jhala, Y.K. quinoxaline: A comprehension of current pharmacological advancement in medicinal chemistry. Eur. J. Med. Chem. Rep. 2022, 5, 100040. [Google Scholar] [CrossRef]
- Matveevskaya, V.V.; Pavlov, D.I.; Kovrizhina, A.R.; Sukhikh, T.S.; Sadykov, E.H.; Dorovatovskii, P.V.; Lazarenko, V.A.; Khlebnikov, A.I.; Potapov, A.S. Experimental and Computational Investigation of the Oxime Bond Stereochemistry in c-Jun N-terminal Kinase 3 Inhibitors 11 H-Indeno [1,2-b] quinoxalin-11-one Oxime and Tryptanthrin-6-oxime. Pharmaceutics 2023, 15, 1802. [Google Scholar] [CrossRef] [PubMed]
Arylimidazolyl Quinoxazolines | Antibacterial Activity | Antifungal Activity | ||||
---|---|---|---|---|---|---|
Gram Positive Bacteria | Gram Negative Bacteria | |||||
B. megaterium | S. aureus | S. taphimurim | E. coli | A. niger | ||
2a-2j | 2d, 2i, 2j | 2e, 2g, 2j | 2e, 2h | 2i, 2j | 2e, 2f, 2g, 2h | |
Activity of Standard Drugs: (50 μg/mL) | ||||||
1 | Ampicillin | 27 | 26 | 25 | 28 | - |
2 | Chloramphenicol | 29 | 28 | 27 | 25 | - |
3 | Norfloxacin | 32 | 30 | 24 | 27 | - |
4 | Fluconazole | - | - | - | - | 26 |
Compound | Ar. | MF | MP | % Nitrogen Yield | Antibacterial Activity | Anti- Fungal Activity | ||||
---|---|---|---|---|---|---|---|---|---|---|
Calc. | Found | Gram Positive | Gram Negative | |||||||
a | b | c | d | e | ||||||
2a | C6H5- | C21H19ClN4 | 190 | 15.44 | 15.39 | 14 | 17 | 18 | 12 | 15 |
2b | 3-OH-C6H4- | C21H19ClN4O | 122 | 14.79 | 14.70 | 11 | 16 | 18 | 17 | 18 |
2c | 4-OH-C6H4- | C21H19ClN4O | 131 | 14.79 | 14.65 | 10 | 12 | 15 | 18 | 17 |
2d | 3-NH2-C6H4- | C21H20ClN5 | 211 | 18.53 | 18.50 | 20 | 14 | 19 | 15 | 16 |
2e | 4-Cl-C6H4- | C21H18Cl2N4 | 236 | 14.10 | 14.08 | 16 | 20 | 21 | 18 | 22 |
2f | 4-Br-C6H4- | C21H18BrClN4 | 251 | 12.68 | 12.60 | 17 | 16 | 17 | 17 | 20 |
2g | 3-NO2-C6H4- | C21H18ClN5O2 | 287 | 17.17 | 17.10 | 13 | 21 | 17 | 17 | 20 |
2h | 4-NO2-C6H4- | C21H18ClN5O2 | 256 | 17.17 | 17.02 | 19 | 13 | 20 | 18 | 21 |
2i | 4-OCH3-C6H4- | C22H21ClN4O | 289 | 14.26 | 14.20 | 20 | 19 | 18 | 21 | 19 |
2j | 3-NH2,2-OH-C6H3- | C21H20ClN5O | >300 | 17.78 | 17.71 | 22 | 23 | 17 | 25 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, A.K.; Purohit, D.M. Synthesis, Spectral Studies and Antimicrobial Activity of 2-Aryl-3-(2′-n-butyl-4′-chloro-1′-H,5′-imidazolyl)-quinoxazolines. Chem. Proc. 2024, 16, 49. https://doi.org/10.3390/ecsoc-28-20100
Joshi AK, Purohit DM. Synthesis, Spectral Studies and Antimicrobial Activity of 2-Aryl-3-(2′-n-butyl-4′-chloro-1′-H,5′-imidazolyl)-quinoxazolines. Chemistry Proceedings. 2024; 16(1):49. https://doi.org/10.3390/ecsoc-28-20100
Chicago/Turabian StyleJoshi, Asha K., and Dipak M. Purohit. 2024. "Synthesis, Spectral Studies and Antimicrobial Activity of 2-Aryl-3-(2′-n-butyl-4′-chloro-1′-H,5′-imidazolyl)-quinoxazolines" Chemistry Proceedings 16, no. 1: 49. https://doi.org/10.3390/ecsoc-28-20100
APA StyleJoshi, A. K., & Purohit, D. M. (2024). Synthesis, Spectral Studies and Antimicrobial Activity of 2-Aryl-3-(2′-n-butyl-4′-chloro-1′-H,5′-imidazolyl)-quinoxazolines. Chemistry Proceedings, 16(1), 49. https://doi.org/10.3390/ecsoc-28-20100