Intermetallic Compounds from Non-Noble Metals as Catalysts in the Electrochemical Reactions of Ammonia Synthesis †
Abstract
1. Introduction
2. IMCs in Nitrogen Reduction Reaction (NRR)
3. IMC in Nitrate Reduction Reaction (NO3RR/NO2RR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, Y.; Zhuang, Z.; Zhu, H.; Hao, J.; Chu, K.; Lai, F.; Zong, W.; Wang, C.; Ma, P.; Dong, W.; et al. Isolation of Metalloid Boron Atoms in Intermetallic Carbide Boosts the Catalytic Selectivity for Electrocatalytic N2 Fixation. Adv. Energy Mater. 2021, 11, 2102138. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Qu, Y.B.; Fan, Y.C.; Wang, Z.L.; Lang, X.Y.; Li, J.C.; Jiang, Q. Multi-site intermetallic Ni3Mo effectively boosts selective ammonia synthesis. Appl. Catal. B Environ. 2023, 339, 123133. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Wu, X.; Nie, N.; Zhang, D.; Li, H.; Zhao, H.; Lai, J.; Wang, L. Engineering ordered vacancies and atomic arrangement over the intermetallic PdM/CNT (M = Pb, Sn, In) nanocatalysts for synergistically promoting electrocatalysis N2 fixation. Appl. Catal. B Environ. 2022, 314, 121465. [Google Scholar] [CrossRef]
- Cui, Y.; Dong, A.; Qu, Y.; Zhang, J.; Zhao, M.; Wang, Z.; Jiang, Q. Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia. Chem. Eng. J. 2021, 426, 131843. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, X.; Guo, M.; Hu, W.; Huang, B.; Yuan, D. Enhanced catalytic activity of bimetallic ordered catalysts for nitrogen reduction reaction by perturbation of scaling relations. ACS Catal. 2023, 13, 2190–2201. [Google Scholar] [CrossRef]
- Chen, S.; Gao, Y.; Wang, W.; Prezhdo, O.V.; Xu, L. Prediction of Three-Metal Cluster Catalysts on Two-Dimensional W2N3 Support with Integrated Descriptors for Electrocatalytic Nitrogen Reduction. ACS Nano 2023, 17, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, S.; Chen, M.; Zhou, S.; Wu, L. An isolated bimetallic Fe–Ru single-atom catalyst for efficient electrochemical nitrogen reduction. J. Mater. Chem. A 2023, 11, 14900–14910. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Hu, W.; Huang, B.; Yuan, D. Highly efficient Ru-based Heusler alloys for nitrogen reduction reaction: Breaking scaling relations and regulating potential determining steps. Appl. Surf. Sci. 2024, 655, 159686. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, T.; Hao, J.; Zhuang, Z.; Gao, G.; Lai, F.; Lu, S.; Wang, X.; Kang, Q.; Wu, G.; et al. A Coherent Pd–Pd16B3 Core–Shell Electrocatalyst for Controlled Hydrogenation in Nitrogen Reduction Reaction. Adv. Funct. Mater. 2024, 34, 2400849. [Google Scholar] [CrossRef]
- Ma, G.; Sun, F.; Qiao, L.; Shen, Q.; Wang, L.; Tang, Q.; Tang, Z. Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 2023, 16, 10867–10872. [Google Scholar] [CrossRef]
- Li, X.; Shen, P.; Li, X.; Ma, D.; Chu, K. Sub-nm RuOx Clusters on Pd Metallene for Synergistically Enhanced Nitrate Electroreduction to Ammonia. ACS Nano. 2023, 17, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, X.-M.; Liu, X.; Liu, Z.; Wang, Y.-Q. Cu2+1O/Ag Heterostructure for Boosting the Electrocatalytic Nitrate Reduction to Ammonia Performance. Inorg. Chem. 2023, 62, 7525–7532. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Dai, Y.; Song, Q.; Lu, L.; Yu, X. Efficient Electrochemical Nitrate Removal by Ordered Ultrasmall Intermetallic AuCu3 via Enhancing Nitrate Adsorption. ACS Appl. Mater. Interfaces 2024, 16, 20551–20558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, W.; Zheng, C.; Chen, K.; Pang, H.; Shi, W.; Lu, J. Insight into the bimetallic structure sensibility of catalytic nitrate reduction over Pd-Cu nanocrystals. J. Environ. Sci. 2025, 149, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, H.; Xia, J.; Zhu, X.; Qu, K.; Feng, F.; Han, S.; He, C.; Ma, X.; Lin, G.; et al. Screening of Intermetallic Compounds Based on Intermediate Adsorption Equilibrium for Electrocatalytic Nitrate Reduction to Ammonia. J. Am. Chem. Soc. 2024, 146, 20069–20079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, C.; Wang, Y.; Zhu, X.; Qu, K.; Ma, X.; He, C.; Han, S.; Liu, A.; Wang, Q.; et al. Transition Metal-Gallium Intermetallic Compounds with Tailored Active Site Configurations for Electrochemical Ammonia Synthesis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202409515. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhu, G.; Yang, H.; Liu, B.; Li, M.; Qi, C.; Wang, L.; Jiang, W.; Qiu, P.; Luo, W. Periodic Adjacent Pd-Fe Pair Sites for Enhanced Nitrate Electroreduction to Ammonia via Accelerating Proton Relay. Adv. Energy Mater. 2024, 2401717. [Google Scholar] [CrossRef]
- Wang, P.; Liu, C.; Rao, L.; Tao, W.; Huang, R.; Huang, P.; Zhou, G. Transient heating synthesis of a highly ordered Ga–Cu intermetallic antiperovskite for efficient ammonia electrosynthesis and ultrastable zinc–nitrate fuel cells. Energy Environ. Sci. 2024, 17, 6698–6706. [Google Scholar] [CrossRef]
- Ma, X.; Ma, C.; Wang, Y.; Xia, J.; Han, S.; Zhang, H.; He, C.; Feng, F.; Lin, G.; Cao, W.; et al. Precise Control of Active Site Configurations in High-Entropy Intermetallic Compounds for Electrocatalytic Nitrate Reduction to Ammonia. Angew. Chem. Int. Ed. Engl. 2025, 64, e202502333. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.; Kultin, D.; Lebedeva, O.; Nesterenko, S.; Murashova, E.; Kustov, L. Intermetallic Compound and Solid Solutions of Co75Me25 (Me: Si, Fe, Cr) as Catalysts for the Electrochemical Reaction of Nitrate Conversion to Ammonia. Int. J. Mol. Sci. 2025, 26, 1650. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, I.; Kultin, D.; Lebedeva, O.; Nesterenko, S.; Dunaev, S.F.; Kustov, L. Intermetallic Compounds from Non-Noble Metals as Catalysts in the Electrochemical Reactions of Ammonia Synthesis. Chem. Proc. 2025, 17, 10. https://doi.org/10.3390/chemproc2025017010
Kuznetsova I, Kultin D, Lebedeva O, Nesterenko S, Dunaev SF, Kustov L. Intermetallic Compounds from Non-Noble Metals as Catalysts in the Electrochemical Reactions of Ammonia Synthesis. Chemistry Proceedings. 2025; 17(1):10. https://doi.org/10.3390/chemproc2025017010
Chicago/Turabian StyleKuznetsova, Irina, Dmitry Kultin, Olga Lebedeva, Sergey Nesterenko, Sergey Fyodorovich Dunaev, and Leonid Kustov. 2025. "Intermetallic Compounds from Non-Noble Metals as Catalysts in the Electrochemical Reactions of Ammonia Synthesis" Chemistry Proceedings 17, no. 1: 10. https://doi.org/10.3390/chemproc2025017010
APA StyleKuznetsova, I., Kultin, D., Lebedeva, O., Nesterenko, S., Dunaev, S. F., & Kustov, L. (2025). Intermetallic Compounds from Non-Noble Metals as Catalysts in the Electrochemical Reactions of Ammonia Synthesis. Chemistry Proceedings, 17(1), 10. https://doi.org/10.3390/chemproc2025017010