Microwave-Assisted Multicomponent Syntheses of Heterocyclic Phosphonates †
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Part
Procedure for the Synthesis of the Diethyl (2-Amino-3-cyano-4H-chromen-4-yl)phosphonate (3)
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moonen, K.; Laureyn, I.; Stevens, C.V. Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem. Rev. 2004, 104, 6177–6216. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.K. (Ed.) Phosphorus Heterocycles II. In Topics in Heterocyclic Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; Volume 21. [Google Scholar]
- Tappe, F.M.J.; Trepohl, V.T.; Oestreich, M. Transition-metal-catalyzed CP cross-coupling reactions. Synthesis 2010, 18, 3037–3062. [Google Scholar]
- Ali, T.E.; Abdel-Kariem, S.M. Methods for the synthesis of α-heterocyclic/heteroaryl-α-aminophosphonic acids and their esters. Arkivoc 2015, 2015, 246–287. [Google Scholar] [CrossRef]
- Haji, M. Multicomponent Reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem. 2016, 12, 1269–1301. [Google Scholar] [CrossRef] [PubMed]
- Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012, 112, 3083–3135. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.J.J. (Ed.) Multicomponent Reactions 1. In Science of Synthesis; Thieme: Stuttgart, Germany, 2014. [Google Scholar]
- Kiss, N.Z.; Bálint, E.; Keglevich, G. Microwave-Assisted Syntheses in Organic Chemistry. In Milestones in Microwave Chemistry; Keglevich, G., Ed.; Springer: Basel, Switzerland, 2016; pp. 11–45. [Google Scholar]
- Kappe, C.O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry, 2nd ed.; Wiley: Weinheim, Germany, 2012; Volume 52. [Google Scholar]
- Jiang, B.; Shi, F.; Tu, S.J. Microwave-assisted multicomponent reactions in the heterocyclic chemistry. Curr. Org. Chem. 2010, 14, 357–378. [Google Scholar] [CrossRef]
- Bálint, E.; Keglevich, G. The Spread of the Application of the Microwave Technique in Organic Synthesis. In Milestones in Microwave Chemistry; Keglevich, G., Ed.; Springer: Basel, Switzerland, 2016; pp. 1–10. [Google Scholar]
- de la Hoz, A.; Loupy, A. (Eds.) Microwaves in Organic Synthesis, 3rd ed.; Wiley: Weinheim, Germany, 2012. [Google Scholar]
- Estela, L.; Pouxb, M.; Benamaraa, N.; Polaerta, I. Continuous flow-microwave reactor: Where are we? Chem. Eng. Process. 2016, 113, 56–64. [Google Scholar] [CrossRef]
- Tajti, Á.; Tóth, N.; Rávai, B.; Csontos, I.; Szabó, P.; Bálint, E. Study on the microwave-assisted batch and continuous flow synthesis of N-alkyl-isoindolin-1-one-3-phosphonates by a special Kabachnik–Fields condensation. Molecules 2020, 25, 3307–3324. [Google Scholar] [CrossRef]
- Hossaini-Sarvani, M.; Roosta, A. Synthesis of 2-amino-4H-chromen-4-yl phosphonats via C-P bond formation catalyzed by nano-rods ZnO under solvent-free condition. Comb. Chem. High Throughput Screen. 2014, 17, 47–52. [Google Scholar] [CrossRef]
- Krishnammagari, S.; Cho, B.; Jeong, Y. Choline chloride based eutectic solvent for the efficient synthesis of 2-amino-4H-chromen-4-yl phosphonate derivatives via multicomponent reaction under mild conditions. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 306–316. [Google Scholar] [CrossRef]
Entry | Catalyst (5 mol%) | Conversion [%] a | Product Composition [%] a | |
---|---|---|---|---|
2 | 3 | |||
1 | – | 0 | 0 | 0 |
2 | PTSA | 0 | 0 | 0 |
3 | Zn(OTF)2 | 0 | 0 | 0 |
4 | 18-crown-6 | 0 | 0 | 0 |
5 | K2CO3 | 39 | 75 | 25 |
6 | K2CO3 + TEBAC (5 mol%) | 53 | 74 | 26 |
7 | TEA | 100 | 62 | 38 |
8 b | TEA | 100 | 77 | 29 |
9 c | TEA | 88 | 75 | 25 |
Entry | TEA [mol%] | T [°C] | t [min] | Product Composition [%] a | Yield [%] b | |
---|---|---|---|---|---|---|
2 | 3 | |||||
1 | 5 | 60 | 30 | 62 | 38 | – |
2 | 5 | 80 | 30 | 43 | 57 | – |
3 | 10 | 80 | 30 | 28 | 72 | – |
4 | 10 | 80 | 45 | 12 | 88 | – |
5 | 15 | 80 | 30 | 14 | 86 | – |
6 | 15 | 80 | 45 | 0 | 100 | 93 (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bálint, E.; Popovics-Tóth, N.; Tajti, Á.; Rávai, B.; Szabó, K.E.; Perdih, F. Microwave-Assisted Multicomponent Syntheses of Heterocyclic Phosphonates. Chem. Proc. 2021, 3, 108. https://doi.org/10.3390/ecsoc-24-08548
Bálint E, Popovics-Tóth N, Tajti Á, Rávai B, Szabó KE, Perdih F. Microwave-Assisted Multicomponent Syntheses of Heterocyclic Phosphonates. Chemistry Proceedings. 2021; 3(1):108. https://doi.org/10.3390/ecsoc-24-08548
Chicago/Turabian StyleBálint, Erika, Nóra Popovics-Tóth, Ádám Tajti, Bettina Rávai, Kármen Emőke Szabó, and Franc Perdih. 2021. "Microwave-Assisted Multicomponent Syntheses of Heterocyclic Phosphonates" Chemistry Proceedings 3, no. 1: 108. https://doi.org/10.3390/ecsoc-24-08548
APA StyleBálint, E., Popovics-Tóth, N., Tajti, Á., Rávai, B., Szabó, K. E., & Perdih, F. (2021). Microwave-Assisted Multicomponent Syntheses of Heterocyclic Phosphonates. Chemistry Proceedings, 3(1), 108. https://doi.org/10.3390/ecsoc-24-08548