Studies on mcl-Polyhydroxyalkanoates Using Different Carbon Sources for New Biomedical Materials †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
References
- Bhushaniab, J.A.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol. 2014, 38, 21–23. [Google Scholar] [CrossRef]
- Lupescu, I.; Eremia, M.C.; Savoiu, G.V.; Spiridon, M.; Panaitescu, D.; Nicolae, C.; Vladu, M.G.; Stefaniu, A. Comparative studies on isolation of medium-chain-length Polyhydroxyxyalkanoates produced by Pseudomonas spp. strains. Rev. Chim. 2016, 67, 1957–1962. [Google Scholar]
- Vladu, M.G.; Petrescu, M.M.; Stefaniu, A.; Savoiu, G.; Maria, S.; Eremia, M.C.; Lupescu, I. Studies on polyhydroxyalkanoates biosynthesis by some Pseudomonas spp. strains. Rom. Biotechnol. Lett. 2019, 24, 388–394. [Google Scholar] [CrossRef]
- Muangwong, A.; Boontip, T.; Pachimsawat, J.; Napathorn, S.C. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb. Cell Factories 2016, 15, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirstea, D.M.; Stefanescu, M.; Pahonţu, J.M.; Cornea, C.P. Use of some carbon sources by Pseudomonas strains for synthesizing polyhydroxyalkanoates and/or rhamnolipids. Rom. Biotechnol. Lett. 2014, 19, 9400–9408. [Google Scholar]
- Kabilan, S.; Ayyasamy, M.; Jayavel, S.; Paramasamy, G. Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: Perspective. Int. J. Microbiol. 2012, 2012, 317828. [Google Scholar] [CrossRef] [PubMed]
- Koller, M. Poly(hydroxyalkanoates) for Food Packaging: Application and Attempts towards Implementation. Appl. Food Biotechnol. 2014, 1, 3–15. [Google Scholar]
- Ali, I.; Jamil, N. Polyhydroxyalkanoates: Current applications in the medical field. Front. Biol. 2016, 11, 19–27. [Google Scholar] [CrossRef]
- Volova, T.; Goncharov, D.; Sukovatyi, A.; Shabanov, A.; Nikolaeva, E.; Shishatskay, E. Electrospinning of polyhydroxyalkanoate fibrous scaffolds: Effects on electrospinning parameters on structure and properties. J. Biomater. Sci. Polym. Ed. 2013, 25, 370–393. [Google Scholar] [CrossRef] [PubMed]
- Puppi, D.; Pecorini, G.; Chiellini, F. Biomedical Processing of Polyhydroxyalkanoates. Bioengineering 2019, 6, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Lim, J. Biodegradable polyhydroxyalkanoates nanocarriers for drug delivery applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications Volume 1; Woodhead Publishing: Sawston, UK; Cambridge, UK, 2018; pp. 607–634. [Google Scholar]
- Koller, M.; Hesse, P.; Bona, R.; Kutschera, C.; Atlic, A.; Braunegg, G. Biosynthesis of High Quality Polyhydroxyalkanoate Co- and Terpolyesters for Potential MedicalApplication. Macromol. Symp. 2007, 253, 33–39. [Google Scholar] [CrossRef]
Samples | Precursors Added (g/L) | Parameters Values | |||
---|---|---|---|---|---|
0 h | 24 h | pH | OD 1 | DCW 2 (g/L) | |
P5 | 8.35 C8 | 8.35 C8 | 7.32 | 0.425 | 3.370 |
P7 | 8.35 C9 | 8.35 C9 | 7.35 | 0.241 | 1.619 |
P13 | 8.35 C8 | 8.35 C9 | 7.16 | 0.353 | 1.619 |
P14 | 8.35 C9 | 8.35 C8 | 7.15 | 0.422 | 1.648 |
P17 | 8.35 C9 | 8.35 C7 | 7.19 | 0.287 | 1.943 |
P18 | 8.35 C7 | 8.35 C9 | 7.25 | 0.300 | 1.537 |
P19 | 8.35 C8 | 6.88 C6 | 7.37 | 0.527 | 3.636 |
P21 | 6.88 C6 | 8.35 C8 | 7.31 | 0.353 | 2.593 |
Samples | PHAs (%) | Hydroxyacids | |||||
---|---|---|---|---|---|---|---|
C6 (%) | C7 (%) | C8 (%) | C9 (%) | C10 (%) | C11 (%) | ||
P5 | 51.16 | 7.32 | - | 88.00 | 3.29 | 1.29 | - |
P7 | 40.40 | 1.25 | 21.58 | 13.23 | 59.63 | 0.75 | 0.47 |
P13 | 47.66 | 2.91 | 13.57 | 33.79 | 45.72 | 0.93 | 0.86 |
P14 | 35.81 | 1.33 | 19.55 | 14.9 | 59.59 | 1.44 | 0.77 |
P17 | 43.22 | 0.11 | 14.23 | 0.36 | 79.32 | 1.44 | 2.54 |
P18 | 48.79 | - | 66.18 | 0.52 | 26.77 | 2.20 | 0.57 |
P19 | 56.29 | 9.66 | - | 79.46 | 0.13 | 7.59 | 0.96 |
P21 | 52.64 | 8.28 | - | 82.65 | - | 5.53 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miu, D.-M.; Vladu, M.-G.; Jinga, S.-I. Studies on mcl-Polyhydroxyalkanoates Using Different Carbon Sources for New Biomedical Materials. Chem. Proc. 2021, 3, 143. https://doi.org/10.3390/ecsoc-24-08429
Miu D-M, Vladu M-G, Jinga S-I. Studies on mcl-Polyhydroxyalkanoates Using Different Carbon Sources for New Biomedical Materials. Chemistry Proceedings. 2021; 3(1):143. https://doi.org/10.3390/ecsoc-24-08429
Chicago/Turabian StyleMiu, Dana-Maria, Mariana-Gratiela Vladu, and Sorin-Ion Jinga. 2021. "Studies on mcl-Polyhydroxyalkanoates Using Different Carbon Sources for New Biomedical Materials" Chemistry Proceedings 3, no. 1: 143. https://doi.org/10.3390/ecsoc-24-08429
APA StyleMiu, D. -M., Vladu, M. -G., & Jinga, S. -I. (2021). Studies on mcl-Polyhydroxyalkanoates Using Different Carbon Sources for New Biomedical Materials. Chemistry Proceedings, 3(1), 143. https://doi.org/10.3390/ecsoc-24-08429