A New Fluorescent Calixarene Dimer: Synthesis, Optical Properties, and Sensory Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Methods
2.2. Materials
2.3. Synthesis
3. Results and Discussion
3.1. Synthesis and Structural Characterization
3.2. Photophysical Properties
3.3. Complexation Studies with Fullerenes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Amabilino, D.B.; Gale, P.A. Supramolecular chemistry anniversary. Chem. Soc. Rev. 2017, 46, 2376–2377. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhao, Y. Biomedical Applications of Supramolecular Systems Based on Host−Guest Interactions. Chem. Rev. 2015, 115, 7794–7839. [Google Scholar] [CrossRef] [PubMed]
- Gutsche, C.D. Calixarenes-An Introduction. In Monographs in Supramolecular Chemistry, 2nd ed.; Stoddart, J.F., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 2019, 119, 9657–9721. [Google Scholar] [CrossRef] [PubMed]
- Barata, P.D.; Prata, J.V. Cooperative Effects in the Detection of a Nitroaliphatic Liquid Explosive and an Explosive Taggant in the Vapor Phase by Calix[4]arene-Based Carbazole-Containing Conjugated Polymers. ChemPlusChem 2014, 79, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.V.; Costa, A.I.; Teixeira, C.M. A Solid-State Fluorescence Sensor for Nitroaromatics and Nitroanilines Based on a Conjugated Calix[4]arene Polymer. J. Fluoresc. 2020, 30, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.V.; Barata, P.D. Fostering protein–calixarene interactions: From molecular recognition to sensing. RSC Adv. 2016, 6, 1659–1669. [Google Scholar] [CrossRef]
- Anilkumar, P.; Lu, F.; Cao, L.; Luo, P.G.; Liu, J.-H.; Sahu, S.; Tackett, K.N.; Wang, Y.; Sun, Y.-P. Fullerenes for applications in biology and medicine. Curr. Med. Chem. 2011, 18, 2045–2059. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Z.; Yip, H.-L.; Jen, A.K.-Y. Functional fullerenes for organic photovoltaics. J. Mater. Chem. 2012, 22, 4161–4177. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakashima, K.; Shinkai, S. Very Convenient and Efficient Purification Method for Fullerene (C60) with 5,11,17,23,29,35,41,47-Octa-tert-butylcalix[8]arene-49,50,51,52,53,54,55,56-octol. Chem. Lett. 1994, 23, 699–702. [Google Scholar] [CrossRef]
- Atwood, J.L.; Koutsantonis, G.A.; Raston, C.L. Purification of C60 and C70 by selective complexation with calixarenes. Nature 1994, 368, 229–231. [Google Scholar] [CrossRef]
- Cruz, J.L.D.; Nierengarten, J.F. Fullerenes and Calixarenes. In Calixarenes in the Nanoworld; Vicens, J., Harrowfield, J., Baklouti, L., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 173–196. [Google Scholar]
- Zhong, Z.-L.; Ikeda, A.; Shinkai, S. Complexation of Fullerenes. In Calixarenes 2001; Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 476–495. [Google Scholar]
- Georghiou, P.E. Calixarenes and Fullerenes. In Calixarenes and Beyond; Neri, P., Sessler, J.L., Wang, M.-X., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 879–919. [Google Scholar]
- Haino, T.; Yanase, M.; Fukunaga, C.; Fukazawa, Y. Fullerene encapsulation with calix[5]arenes. Tetrahedron 2006, 62, 2025–2035. [Google Scholar] [CrossRef]
- Halder, A.; Nayak, S.K.; Chattopadhyay, S.; Bhattacharya, S. A Rational Approach Towards Determination of Optical Ionicity and Non-covalent Interactions in Fullerene-Calix[4]arene Host-Guest Complexes. J. Solution Chem. 2012, 41, 223–240. [Google Scholar] [CrossRef]
- Kás, M.; Lang, K.; Stibora, I.; Lhoták, P. Novel fullerene receptors based on calixarene–porphyrin conjugates. Tetrahedron Lett. 2007, 48, 477–481. [Google Scholar] [CrossRef]
- Golan, A.; Goldberg, I.; Vigalok, A. Synthesis and C70 complexation studies of a fluorescent 5,5′-bi-p-tert-butylcalix[4]arene scaffold. Supramol. Chem. 2016, 28, 526–535. [Google Scholar] [CrossRef]
- Eaton, D.F. Reference materials for fluorescence measurement. Pure Appl. Chem. 1988, 60, 1107–1114. [Google Scholar] [CrossRef]
- A Guide to Recording Fluorescence Quantum Yields, Horiba Scientific. Available online: http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Fluorescence/quantumyieldstrad.pdf (accessed on 5 November 2020).
- Liu, Y.; Han, B.-H.; Chen, Y.-T. Molecular Recognition and Complexation Thermodynamics of Dye Guest Molecules by Modified Cyclodextrins and Calixarenesulfonates. J. Phys. Chem. B 2002, 106, 4678–4687. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; p. 56. [Google Scholar]
- Brown, A.M. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput. Meth. Programs Biomed. 2001, 65, 191–200. [Google Scholar] [CrossRef]
- Spartan’18; Wavefunction Inc.: Irvine, CA, USA, 2019.
- Dondoni, A.; Ghiglione, C.; Marra, A.; Scoponi, M. Synthesis of Calix[4]arenylvinylene and Calix[4]arenylphenylene Oligomers by Stille and Suzuki Cross-Coupling Reactions. J. Org. Chem. 1998, 63, 9535–9539. [Google Scholar] [CrossRef]
- Bovonsombat, P.; Leykajarakul, J.; Khan, C.; Pla-on, K.; Krause, M.M.; Khanthapura, P.; Ali, R.; Doowa, N. Regioselective iodination of phenol and analogues using N-iodosuccinimide and p-toluenesulfonic acid. Tetrahedron Lett. 2009, 50, 2664–2667. [Google Scholar] [CrossRef]
- Barata, P.D.; Costa, A.I.; Prata, J.V. Calix[4]arene-carbazole-containing polymers: Synthesis and properties. React. Funct. Polym. 2012, 72, 627–634. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, S.; Barata, P.D.; Costa, A.I.; Prata, J.V. A New Fluorescent Calixarene Dimer: Synthesis, Optical Properties, and Sensory Applications. Chem. Proc. 2021, 3, 95. https://doi.org/10.3390/ecsoc-24-08340
Costa S, Barata PD, Costa AI, Prata JV. A New Fluorescent Calixarene Dimer: Synthesis, Optical Properties, and Sensory Applications. Chemistry Proceedings. 2021; 3(1):95. https://doi.org/10.3390/ecsoc-24-08340
Chicago/Turabian StyleCosta, Sérgio, Patrícia D. Barata, Alexandra I. Costa, and José V. Prata. 2021. "A New Fluorescent Calixarene Dimer: Synthesis, Optical Properties, and Sensory Applications" Chemistry Proceedings 3, no. 1: 95. https://doi.org/10.3390/ecsoc-24-08340
APA StyleCosta, S., Barata, P. D., Costa, A. I., & Prata, J. V. (2021). A New Fluorescent Calixarene Dimer: Synthesis, Optical Properties, and Sensory Applications. Chemistry Proceedings, 3(1), 95. https://doi.org/10.3390/ecsoc-24-08340