Polysaccharide-Based Organic Frameworks with Embedded Nanoparticles: Advanced SPR Study on the Antiviral Activity of Gold Composites Derived from Glucuronoxylomannan †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Molecular Level Analysis: Advanced SPR Study
3.2. Biological Experiments In Vivo
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chlubnovhá, I.; Sylla, B.; Nugier-Chauvin, C.; Daniellou, R.; Legentil, L.; Kralová, B.; Ferrières, V. Natural glycans and glycoconjugates as immunomodulating agents. Nat. Prod. Rep. 2011, 28, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Boltovets, P.M.; Kravchenko, S.O.; Kovalenko, O.G.; Snopok, B.A. Mushroom derived glycane as capping and reducing agent for pH-dependent growth of gold nanoparticles. FEBS Open Bio 2018, 8, 472. [Google Scholar]
- Podgorsky, V.S.; Kovalenko, A.G.; Boltovets, P.N.; Snopok, B.A.; Polishchuk, E.N. Complex formation of glucuronoxylomannan Tremella mesenterica Ritz. Fr. with tobacco mosaic virus such as one of the mechanisms polysaccharide’s antiviral activity. Rep. NAS Ukr. 2013, 12, 157–165. [Google Scholar]
- Yu, Q.; Li, J.; Zhang, Y.; Wang, Y.; Liu, L.; Li, M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci. Rep. 2016, 6, 26667. [Google Scholar] [CrossRef] [PubMed]
- Snopok, B.A.; Snopok, O.B. Nanoscale–Specific Analytics: How to Push the Analytic Excellence in Express Analysis of CBRN. In Advanced Nanomaterials for Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology; Bonča, J., Kruchinin, S., Eds.; Springer: Dordrecht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Vinogradov, E.; Petersen, B.; Duubs, J.O.; Wasser, S. The structure of glucuroxylomannan produced by culinary-medicinal yellow brain mushroom (Tremella mesenterica Ritz.: Fr., Heterobasidomycetes) grown as on cell biomass in submerged culture. Carbohydr. Res. 2004, 339, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Musaki, A.; Sone, Y.; Yoshida, M.; Takeuchi, K. Beta-Glucan. U.S. Patent US4769363A, 6 September 1988. [Google Scholar]
- Kovalenko, O.G.; Polishchuk, E.N.; Wasser, S.P. Glycans of higher basisdiomycetes mushroom ganoderma adspersum (Schulzer) donk: Isolation and antyphytoviral activity. Biotechnology 2010, 3, 83–91. (In Ukrainian) [Google Scholar]
- Snopok, B.; Yurchenko, M.; Szekely, L.; Klein, G.; Kasuba, E. SPR based immuno-capture approach for in vitro analysis of protein complex formation: Mapping of MRS18-2 binding site on retinoblastoma protein. Anal. Bioanal. Chem. 2006, 386, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Snopok, B. Biosensing under Surface Plasmon Resonance Conditions, Chapter 19. In 21st Century Nanoscience—A Handbook; Sattler, K., Ed.; CRC Press & Taylor and Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Snopok, B.A. Theory and Practical Application of Surface Plasmon Resonance for Analytical Purposes. Theor. Exp. Chem. 2012, 48, 283–306. [Google Scholar] [CrossRef]
- Boltovets, P.M.; Polischuk, O.M.; Kovalenko, O.G.; Snopok, B.A. A simple SPR-based method for the quantification of the effect of potential virus inhibitors. Analyst 2013, 138, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Boltovets, P.M.; Snopok, B.A.; Boyko, V.R.; Shevchenko, T.P.; Dyachenko, N.S.; Shirshov, Y.M. Detection of plant viruses using a surface plasmon resonance via complexing with specific antibodies. J. Virol. Methods 2004, 121, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Boltovets, P.M.; Boyko, V.R.; Kostikov, I.Y.; Dyachenko, N.S.; Snopok, B.A.; Shirshov, Y.M. Simple method for plant virus detection: Effect of antibody immobilization technique. J. Virol. Methods 2002, 105, 141–146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boltovets, P.; Kravchenko, S.; Kovalenko, O.; Snopok, B. Polysaccharide-Based Organic Frameworks with Embedded Nanoparticles: Advanced SPR Study on the Antiviral Activity of Gold Composites Derived from Glucuronoxylomannan. Chem. Proc. 2021, 5, 38. https://doi.org/10.3390/CSAC2021-10475
Boltovets P, Kravchenko S, Kovalenko O, Snopok B. Polysaccharide-Based Organic Frameworks with Embedded Nanoparticles: Advanced SPR Study on the Antiviral Activity of Gold Composites Derived from Glucuronoxylomannan. Chemistry Proceedings. 2021; 5(1):38. https://doi.org/10.3390/CSAC2021-10475
Chicago/Turabian StyleBoltovets, Praskoviya, Sergii Kravchenko, Oleksiy Kovalenko, and Borys Snopok. 2021. "Polysaccharide-Based Organic Frameworks with Embedded Nanoparticles: Advanced SPR Study on the Antiviral Activity of Gold Composites Derived from Glucuronoxylomannan" Chemistry Proceedings 5, no. 1: 38. https://doi.org/10.3390/CSAC2021-10475
APA StyleBoltovets, P., Kravchenko, S., Kovalenko, O., & Snopok, B. (2021). Polysaccharide-Based Organic Frameworks with Embedded Nanoparticles: Advanced SPR Study on the Antiviral Activity of Gold Composites Derived from Glucuronoxylomannan. Chemistry Proceedings, 5(1), 38. https://doi.org/10.3390/CSAC2021-10475