Tunable Electrochemical Sensors Based on Carbon Nanocomposite Materials towards Enhanced Determination of Cadmium, Lead and Copper in Water †
Abstract
:1. Introduction
2. Composite Electrodes Construction, Characterization, and Modification
2.1. Composite Electrode Construction
2.2. Composite Electrode Chacaterization
2.3. Composite Electrode Modification with Hg-Nps
2.4. Metal Solution Preparation and Determination
2.5. Bare Composite Electrodes
2.6. Hg-NPs Drop Casted Electrodes
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hashim, R.; Song, T.H.; Muslim, N.Z.M.; Yen, T.P. Determination of heavy metal levels in fishes from the lower reach of the kelantan river, Kelantan, Malaysia. Trop. Life Sci. Res. 2014, 25, 21–39. [Google Scholar] [PubMed]
- Pérez-Ràfols, C.; Trechera, P.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Determination of Pd(II) using an antimony film coated on a screen-printed electrode by adsorptive stripping voltammetry. Talanta 2017, 167, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okano, G.; Igarashi, S.; Yamamoto, Y.; Saito, S.; Takagai, Y.; Ohtomo, T.; Kimura, S.; Ohno, O.; Oka, Y. HPLC-spectrophotometric detection of trace heavy metals via ‘cascade’ separation and concentration. Int. J. Environ. Anal. Chem. 2015, 95, 135–144. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azaman, F.; Juahir, H.; Yunus, K.; Azid, A.; Kamarudin, M.K.; Toriman, M.E.; Mustafa, A.D.; Amran, M.A.; Hasnam, C.N.; Saudi, A.S. Heavy metal in fish: Analysis and human health—A review. J. Teknol. 2015, 77, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nor, Y.M.; McNeal, B.L. Square wave anodic stripping voltammetry: Determination of trace metals in aqueous extracts of soil samples. Chem. Speciat. Bioavailab. 1993, 5, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Scarponi, G. Optimization of Square Wave Anodic Stripping Voltammetry (SWASV) for the Simultaneous Determination of Cd, Pb, and Cu in Seawater and Comparison with Differential Pulse Anodic Stripping Voltammetry (DPASV). April 2002. Available online: http://citeweb.info/20020474074 (accessed on 23 June 2021).
- Ramesh, G.V.; Prasad, M.D.; Radhakrishnan, T.P. Mercury nanodrops and nanocrystals. Chem. Mater. 2011, 23, 5231–5236. [Google Scholar] [CrossRef]
- Ross, J.W.; Demars, R.D.; Shain, I. Analytical Applications of the Hanging Mercury Drop Electrode. Anal. Chem. 1956, 28, 1768–1771. [Google Scholar] [CrossRef]
- Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical sensors and devices for heavy metals assay in water: The French groups’ contribution. Front. Chem. 2014, 2, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, J.; Montes, R.; Baeza, M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. TrAC Trends Anal. Chem. 2017, 97, 201–215. [Google Scholar] [CrossRef]
- Dropsens, S.L. Serie: Prácticas de laboratorio Ref.: DRP-PL4, “Determinación de cobre en agua de grifo”. Available online: https://www.dropsens.com/pdfs_productos/new_brochures/pl1_pl2_pl3_pl4_pl5_pl6_pl7.pdf (accessed on 13 September 2020).
Material | % Carbon Material | % Epotek H77 |
---|---|---|
Graphite | 15 | 85 |
20 | 80 | |
CNTs | 10 | 90 |
rGO | 15 | 85 |
[Cd2+] | |||
Electrode (20% graphite) | Sensitivity [A·(mg·L−1)−1] | r2 (n) | Linear Range (mg·L−1) |
Bare | (1.6 ± 0.1) × 10−4 | 0.995 (n = 5) | 0.1–1 |
plus Hg-NPs | (3.4 ± 0.2) × 10−5 | 0.98 (n = 6) | 0.05–1 |
[Pb2+] | |||
Electrode (20% graphite) | Sensitivity [A·(mg·L−1)−1] | r2 (n) | Linear Range (mg·L−1) |
Bare | (1.9 ± 0.2) × 10−4 | 0.95 (n = 4) | 0.09–0.45 |
plus Hg-NPs | (6.4 ± 0.3) × 10−5 | 0.98 (n = 7) | 0.045–1 |
[Cu2+] | |||
Electrode (20% graphite) | Sensitivity [A·(mg·L−1)−1] | r2 (n) | Linear Range (mg·L−1) |
Bare | (9.7 ± 0.9) × 10−5 | 0.95 (n = 7) | 0.057–1.14 |
plus Hg-NPs | (7 ± 1) × 10−6 | 0.90 (n = 5) | 0.114–1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, L.L.; Bastos-Arrieta, J.; Palet, C.; Baeza, M. Tunable Electrochemical Sensors Based on Carbon Nanocomposite Materials towards Enhanced Determination of Cadmium, Lead and Copper in Water. Chem. Proc. 2021, 5, 8. https://doi.org/10.3390/CSAC2021-10456
Fernández LL, Bastos-Arrieta J, Palet C, Baeza M. Tunable Electrochemical Sensors Based on Carbon Nanocomposite Materials towards Enhanced Determination of Cadmium, Lead and Copper in Water. Chemistry Proceedings. 2021; 5(1):8. https://doi.org/10.3390/CSAC2021-10456
Chicago/Turabian StyleFernández, Laia L., Julio Bastos-Arrieta, Cristina Palet, and Mireia Baeza. 2021. "Tunable Electrochemical Sensors Based on Carbon Nanocomposite Materials towards Enhanced Determination of Cadmium, Lead and Copper in Water" Chemistry Proceedings 5, no. 1: 8. https://doi.org/10.3390/CSAC2021-10456
APA StyleFernández, L. L., Bastos-Arrieta, J., Palet, C., & Baeza, M. (2021). Tunable Electrochemical Sensors Based on Carbon Nanocomposite Materials towards Enhanced Determination of Cadmium, Lead and Copper in Water. Chemistry Proceedings, 5(1), 8. https://doi.org/10.3390/CSAC2021-10456