New in the Catalytic Synthesis of Practically Important Eight- and Nine-Membered Carbocycles by Cycloaddition Reactions with the Participation of 1,3,5-Cycloheptatrienes and 1,3,5,7-Cyclooctatetraenes †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petasis, N.A.; Patane, M.A. The Synthesis of Carbocyclic Eight-Membered Rings. Tetrahedron 1992, 48, 5757–5821. [Google Scholar] [CrossRef]
- Yu, Z.X.; Wang, Y.; Wang, Y. Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles. Chem. Asian J. 2010, 5, 1072–1088. [Google Scholar] [CrossRef] [PubMed]
- D’yakonov, V.A.; Kadikova, G.N.; Dzhemilev, U.M. Transition Metal Complex-Mediated Chemistry of 1,3,5-Cycloheptatrienes. Russ. Chem. Rev. 2018, 87, 797–820. [Google Scholar] [CrossRef]
- Galli, C.; Mandolini, L. The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur. J. Org. Chem. 2000, 2000, 3117–3125. [Google Scholar] [CrossRef]
- Kingston, D.G.I. A natural love of natural products. J. Org. Chem. 2008, 73, 3975–3984. [Google Scholar] [CrossRef]
- Daum, R.S.; Kar, S.; Kirkpatrick, P. Retapamulin. Nat. Rev. Drug Discov. 2007, 6, 865–866. [Google Scholar] [CrossRef]
- Francisco, C.; Banaigs, B.; Valls, R.; Codomier, L. Mediterraneol a, a novel rearranged diterpenoid-hydroquinone from the marine alga Cystoseira mediterranea. Tetrahedron Lett. 1985, 26, 2629–2632. [Google Scholar] [CrossRef]
- Suryawanshi, S.N.; Nayak, U.R. Novel lead tetraacetate oxidation of longicycline: Formation and reactions of the elusive true longicamphor. Tetrahedron Lett. 1977, 18, 2619–2620. [Google Scholar] [CrossRef]
- Francisco, C.; Banaigs, B.; Teste, J.; Cave, A.J. Mediterraneols: A novel biologically active class of rearranged diterpenoid metabolites from Cystoseira mediterranea (Pheophyta). Org. Chem. 1986, 51, 1115–1120. [Google Scholar] [CrossRef]
- Green, M.; Heathcock, S.M.; Wood, D. Reactions of Co-ordinated Ligands. Part II. The reaction of tricarbonylcycloheptatrieneiron and tricarbonyl(methy1-, bromo-, and phenylcyclo-Octatetraene)iron with hexafluoroacetone, dicyanobis-(trif1uoromethyl)ethylene, and tetracyanoethylene. J. Chem. Soc. Dalton Trans. 1973, 15, 1564–1569. [Google Scholar] [CrossRef]
- Cunningham, D.; Hallinan, N.; Moran, G.; McArdle, P. Reaction of tetracyanoethene with tricarbonyliron complexes of some substituted 7-methylenecycloheptatrienes and the subsequent isomerization of the initial addition products. J. Organomet. Chem. 1987, 333, 85–95. [Google Scholar] [CrossRef]
- Goldschmidt, Z.; Genizi, E.; Gottlieb, H.E.; Hezroni-Langermann, D. Pericyclic organometallic reactions. Cycloaddition reactions of (η4-cycloheptatriene)Ru(CO)3. Crystal structure of tricarbonyl[(2,3,4,9-η)-bicyclo[4.2.l]non-2-ene-4,9-diyl-7,7,8,8-tetracarbonitrile]ruthenium. J. Organomet. Chem. 1991, 420, 419–429. [Google Scholar] [CrossRef]
- Rigby, J.H.; Ateeq, H.S.; Charles, N.R.; Cuisiat, S.V.; Ferguson, M.D.; Henshilwood, J.A.; Krueger, A.C.; Ogbu, C.O.; Short, K.M.; Heegt, M.J. Metal-promoted higher-order cycloaddition reactions. Stereochemical, regiochemical, and mechanistic aspects of the [6π+4π] reaction. J. Am. Chem. Soc. 1993, 115, 1382–1396. [Google Scholar] [CrossRef]
- Rigby, J.H. Chromium(0)-promoted higher-order cycloaddition reactions in organic synthesis. Tetrahedron 1999, 55, 4521–4538. [Google Scholar] [CrossRef]
- Rigby, J.H.; Kondratenko, M.A.; Fiedler, C. Preparation of a resin-based chromium catalyst for effecting [6π+2π] cycloaddition reactions. Org. Lett. 2000, 2, 3917–3919. [Google Scholar] [CrossRef]
- Rigby, J.H.; Mann, L.W.; Myers, B.J. Room temperature chromium(0)-catalyzed higher-order cycloaddition reactions. Tetrahedron Lett. 2001, 42, 8773–8775. [Google Scholar] [CrossRef]
- Mach, K.; Antropiusova, H.; Petrusova, L.; Hanus, V.; Turecek, F. [6+2]Cycloadditions Catalyzed by Titanium Complexes. Tetrahedron 1984, 40, 3295–3302. [Google Scholar] [CrossRef]
- Klein, R.; Sedmera, P.; Cejka, J.; Mach, K. Titanium-Catalyzed Cycloaddition Reactions of Phenyl(trimethylsilyl)acetylene to Conjugated Dienes and 1,3,5-Cycloheptatriene. 1-Phenyl-2-(trimethylsilyl)-cyclohexa-1,4-dienes and Their Aromatization. J. Organomet. Chem. 1992, 436, 143–153. [Google Scholar] [CrossRef]
- Achard, M.; Tenaglia, A.; Buono, G. First Cobalt(I)-Catalyzed [6+2] Cycloadditions of Cycloheptatriene with Alkynes. Org. Lett. 2005, 7, 2353–2356. [Google Scholar] [CrossRef]
- Schmidt, T. Molybdenum-catalysed and -mediated cycloaddition reactions: Efficient synthesis of complex products from 1-oxa-l,3-dienes and cyclotrienes or –tetraenes. Chem. Ber. 1997, 130, 453–461. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhao, H.; Wang, J. Rhodium-Catalyzed [6+2] Cycloaddition of Internal Alkynes with Cycloheptatriene: Catalytic Study and DFT Calculations of the Reaction Mechanism. Organometallics 2013, 32, 3529–3536. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Kadikova, G.N.; Kolokoltsev, D.I.; D’yakonov, V.A. Catalytic [6π+2π]-Cycloaddition of Alkynes, 1,2- and 1,3-Dienes to 1,3,5-Cycloheptatrienes Involving Ti Complexes. Tetrahedron 2013, 69, 4609–4611. [Google Scholar] [CrossRef]
- D’yakonov, V.A.; Kadikova, G.N.; Kolokoltsev, D.I.; Ramazanov, I.R.; Dzhemilev, U.M. Titanium-Catalyzed [6π+2π]-Cycloaddition of Alkynes and Allenes to 7-Substituted 1,3,5-Cycloheptatrienes. Eur. J. Org. Chem. 2015, 2015, 4464–4470. [Google Scholar] [CrossRef]
- D’yakonov, V.A.; Kadikova, G.N.; Khalilov, L.M.; Dzhemilev, U.M. Catalytic [6π+2π]-Cycloaddition of 1,2-Dienes to Bis(cyclohepta-1,3,5-trien-7-yl)alkanes in the Presence of Ti(acac)2Cl2-Et2AlCl. Russ. J. Org. Chem. 2018, 54, 832–839. [Google Scholar] [CrossRef]
- Dyakonov, V.A.; Kadikova, G.N.; Nasretdinov, R.N.; Kolokoltsev, D.I.; Dzhemilev, U.M. Titanium-catalyzed [6π+2π]-cycloaddition of Si-containing alkynes to bis(1,3,5-cycloheptatriene-7-yl)alkanes. Tetrahedron Lett. 2017, 58, 1714–1716. [Google Scholar] [CrossRef]
- D’yakonov, V.A.; Kadikova, G.N.; Nasretdinov, R.N.; Dzhemileva, L.U.; Dzhemilev, U.M. The Synthesis of Bicyclo[4.2.1]nona-2,4,7-trienes by [6π+2π]-Cycloaddition of 1-Substituted 1,3,5-Cycloheptatrienes Catalyzed by Titanium and Cobalt Complexes. J. Org. Chem. 2019, 84, 9058–9066. [Google Scholar] [CrossRef]
- Dyakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Khalilov, L.M.; Dzhemilev, U.M. New in the catalytic synthesis of practically important eight- 2 and nine-membered carbocycles by cycloaddition reactions 3 with the participation of 1,3,5-cycloheptatrienes and 4 1,3,5,7-cyclooctatetraenes. Tetrahedron Lett. 2015, 56, 2005–2007. [Google Scholar] [CrossRef]
- Dyakonov, V.A.; Kadikova, G.N.; Dzhemileva, L.U.; Gazizullina, G.F.; Ramazanov, I.R.; Dzhemilev, U.M. Cobalt-Catalyzed [6 + 2] Cycloaddition of Alkynes with 1,3,5,7-Cyclooctatetraene as a Key Element in the Direct Construction of Substituted Bicyclo[4.3.1]decanes. J. Org. Chem. 2017, 82, 471–480. [Google Scholar] [CrossRef]
- D’yakonov, V.A.; Kadikova, G.N.; Dzhemileva, L.U.; Gazizullina, G.F.; Unusbaeva, M.M.; Dzhemilev, U.M. Oxidative skeletal rearrangement of bicyclo[4.2.2]deca-2,4,7,9-tetraenes to bicyclo[4.3.1]deca-2,4,8-triene-7,10-diols and study of the antitumor activity of the products in vitro. Tetrahedron 2018, 74, 4071–4077. [Google Scholar] [CrossRef]
- D’yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Dzhemileva, L.U.; Tulyabaev, A.R.; Dzhemilev, U.M. Synthesis and Antitumor Activity Assay of Epoxy Bicyclo[4.2.2]deca-2,4,7,(9)-tri(tetra)enes and Tricyclo[9.4.2.02,10]heptadeca-2,12,14,16-tetraene. Curr. Org. Chem. 2019, 23, 1158–1165. [Google Scholar] [CrossRef]
- D’yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Ramazanov, I.R.; Dzhemileva, L.U.; Dzhemilev, U.M. Reactions of functionally substituted bicyclo[4.2.2]deca-2,4,7,9-tetraenes with m-chloroperbenzoic acid and in vitro evaluation Of Product Cytotoxicity against tumor cells. Mendeleev Commun. 2019, 29, 517–519. [Google Scholar] [CrossRef]
- D’yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Dzhemilev, U.M. Cobalt(I)-Catalyzed Cycloaddition of Functionally Substituted Alkynes and 1,3-Diynes to 1,3,5,7-Cyclooctatetraene in the Synthesis of Bicyclo[4.2.2]deca-2,4,7,9-tetraenes. ChemistrySelect 2018, 3, 6221–6223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadikova, G.N.; Dzhemilev, U.M. New in the Catalytic Synthesis of Practically Important Eight- and Nine-Membered Carbocycles by Cycloaddition Reactions with the Participation of 1,3,5-Cycloheptatrienes and 1,3,5,7-Cyclooctatetraenes. Chem. Proc. 2022, 6, 2. https://doi.org/10.3390/ECCS2021-11037
Kadikova GN, Dzhemilev UM. New in the Catalytic Synthesis of Practically Important Eight- and Nine-Membered Carbocycles by Cycloaddition Reactions with the Participation of 1,3,5-Cycloheptatrienes and 1,3,5,7-Cyclooctatetraenes. Chemistry Proceedings. 2022; 6(1):2. https://doi.org/10.3390/ECCS2021-11037
Chicago/Turabian StyleKadikova, Gulnara N., and Usein M. Dzhemilev. 2022. "New in the Catalytic Synthesis of Practically Important Eight- and Nine-Membered Carbocycles by Cycloaddition Reactions with the Participation of 1,3,5-Cycloheptatrienes and 1,3,5,7-Cyclooctatetraenes" Chemistry Proceedings 6, no. 1: 2. https://doi.org/10.3390/ECCS2021-11037
APA StyleKadikova, G. N., & Dzhemilev, U. M. (2022). New in the Catalytic Synthesis of Practically Important Eight- and Nine-Membered Carbocycles by Cycloaddition Reactions with the Participation of 1,3,5-Cycloheptatrienes and 1,3,5,7-Cyclooctatetraenes. Chemistry Proceedings, 6(1), 2. https://doi.org/10.3390/ECCS2021-11037