Development and Validation of a Multi-Level Computational Protocol for Drug Repurposing in the Treatment of Bacterial Infections †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Docking Protocol Validation
2.2. Virtual Screening Protocol Validation
2.3. Virtual Screening of ZINC FDA Approved Compounds
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allegretta, G.; Maurer, C.K.; Eberhard, J.; Maura, D.; Hartmann, R.W.; Rahme, L.; Empting, M. In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment. Front. Microbiol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Camara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 2009, 12, 182–191. [Google Scholar] [CrossRef]
- Kamaruzzaman, N.F.; Tan, L.P.; Yazid, K.A.M.; Saeed, S.I.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Chivu, A.; Gibson, A.J. Targeting the Bacterial Protective Armour; Challenges and Novel Strategies in the Treatment of Microbial Biofilm. Materials 2018, 11, 1705. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.; Tasneem, U.; Hussain, T.; Andleeb, S. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections. Res. Rev. J. Microbiol. Biotechnol. 2015, 4, 1–14. [Google Scholar]
- Dufour, D.; Leung, V.; Lévesque, C.M. Bacterial biofilm: Structure, function, and antimicrobial resistance. Endod. Top. 2010, 22, 2–16. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Satpathy, S.; Sen, S.K.; Pattanaik, S.; Raut, S. Review on bacterial biofilm: An universal cause of contamination. Biocatal. Agric. Biotechnol. 2016, 7, 56–66. [Google Scholar] [CrossRef]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Fan, J.; Cao, Z.; Ouyang, W.; Tong, N.; Hu, X.; Hu, J.; Li, P.; Feng, Z.; et al. Anti-biofilm effect of novel thiazole acid analogs against Pseudomonas aeruginosa through IQS pathways. Eur. J. Med. Chem. 2018, 145, 64–73. [Google Scholar] [CrossRef]
- Abelyan, N.; Grabski, H.; Tiratsuyan, S. Identification of flavone and its derivatives as potential inhibitors of transcriptional regulator LasR of Pseudomonas aeruginosa using virtual screening. bioRxiv 2019, 523381. [Google Scholar] [CrossRef] [Green Version]
- Lazdunski, A.M.; Ventre, I.; Sturgis, J.N. Regulatory circuits and communication in Gram-negative bacteria. Nat. Rev. Microbiol. 2004, 2, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Reuter, K.; Steinbach, A.; Helms, V. Interfering with Bacterial Quorum Sensing. Perspect. Med. Chem. 2016, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storz, M.P.; Maurer, C.K.; Zimmer, C.; Wagner, N.; Brengel, C.; De Jong, J.C.; Lucas, S.; Müsken, M.; Häussler, S.; Steinbach, A.; et al. Validation of PqsD as an Anti-biofilm Target in Pseudomonas aeruginosa by Development of Small-Molecule Inhibitors. J. Am. Chem. Soc. 2012, 134, 16143–16146. [Google Scholar] [CrossRef] [PubMed]
- Thomann, A.; Brengel, C.; Börger, C.; Kail, D.; Steinbach, A.; Empting, M.; Hartmann, R.W. Structure-Activity Relationships of 2-Sufonylpyrimidines as Quorum-Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release ofPseudomonas aeruginosa. ChemMedChem 2016, 11, 2522–2533. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Berman, H.M.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, R.P.; Vieira, T.F.; Fernandes, H.S.; Melo, A.; Simões, M.; Sousa, S.F. The Biofilms Structural Database. Trends Biotechnol. 2020, 38, 937–940. [Google Scholar] [CrossRef]
- Jones, G.H.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.F.; Sousa, S.F. Comparing AutoDock and Vina in Ligand/Decoy Discrimination for Virtual Screening. Appl. Sci. 2019, 9, 4538. [Google Scholar] [CrossRef] [Green Version]
- Tf, V.; Rp, M.; Sf, S. Tailoring Specialized Scoring Functions For More Efficient Virtual Screening. Front. Drug Chem. Clin. Res. 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Bell, E.W.; Zhang, Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform. 2019, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef] [PubMed]
- Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016, 44, D1045–D1053. [Google Scholar] [CrossRef] [PubMed]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef]
- Empereur-Mot, C.; Zagury, J.-F.; Montes, M. Screening Explorer–An Interactive Tool for the Analysis of Screening Results. J. Chem. Inf. Model. 2016, 56, 2281–2286. [Google Scholar] [CrossRef]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Choulis, N.H. Miscellaneous drugs, materials, medical devices, and techniques. Side Eff. Drugs Annu. 2009, 757–769. [Google Scholar] [CrossRef]
- Alonso, R.; Cuevas, A.; Mata, P. Lomitapide: A review of its clinical use, efficacy, and tolerability. Core Évid. 2019, 14, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Opdam, F.L.; Guchelaar, H.; Beijnen, J.H.; Schellens, J.H.M. Lapatinib for Advanced or Metastatic Breast Cancer. Oncologist 2012, 17, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.; Whittington, R.; Bryson, H.M. Nefazodone. Drugs 1997, 53, 608–636. [Google Scholar] [CrossRef]
- Anwar, M.; El-Haggar, R.S.; Zaghary, W.A. Salmeterol Xinafoate. Profiles Drug Subst. Excip. Relat. Methodol. 2015, 40, 321–369. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, J.; Huang, M.; Zhang, X. Efficacy and safety of polidocanol in the treatment of varicose veins of lower extremities. Medicine 2021, 100, e24500. [Google Scholar] [CrossRef] [PubMed]
4JVI | 6B8A | |||||
---|---|---|---|---|---|---|
EF 1% | AUC | TG | EF 1% | AUC | TG | |
CHEMPLP | 10.40 | 55.11 | 0.08 | 5.20 | 53.18 | 0.07 |
GoldScore | 0.00 | 50.43 | 0.01 | 0.00 | 46.28 | 0.005 |
ChemScore | 5.20 | 48.95 | 0.005 | 2.60 | 51.73 | 0.02 |
ASP | 10.40 | 66.42 | 0.21 | 10.39 | 65.81 | 0.25 |
3H76 | 3H77 | |||||
---|---|---|---|---|---|---|
EF 1% | AUC | TG | EF 1% | AUC | TG | |
CHEMPLP | 1.73 | 67.89 | 0.25 | 1.73 | 59.19 | 0.03 |
GoldScore | 1.70 | 65.99 | 0.25 | 1.73 | 53.16 | 0.06 |
ChemScore | 0.00 | 70.46 | 0.02 | 1.73 | 59.95 | 0.03 |
ASP | 0.00 | 70.65 | 0.02 | 1.73 | 62.72 | 0.01 |
Drug Name | Description | Structure | ASP Score |
---|---|---|---|
Nilotinib | Bcr-Abl tyrosine kinase inhibitor (TKI) used in the treatment of chronic myelogenous leukemia (CML). | 54.96 | |
Indocyanine Green | Dye used in medical diagnosis. It has been used to measure cardiac output and liver function, and in ophthalmic angiography [27]. | 50.55 | |
Lomitapide | Used to treat patients with Homozygous familial hypercholesterolemia (HoFH). It is an inhibitor of MTP, an enzyme responsible for the synthesis of low-density lipoproteins in the liver [28]. | 50.01 | |
Valrubicin | Chemotherapy drug used to treat carcinoma in situ bladder tumors. | 49.86 | |
Lapatinib | Inhibitor of tyrosine kinase domains of epidermal growth factor receptor and human epidermal growth-factor receptor (HER)-2. Used to treat metastatic HER-2+ breast cancer [29]. | 49.89 |
Drug Name | Description | Structure | CHEMPLP Score |
---|---|---|---|
Tessalon | A non-narcotic oral antitussive agent. | 93.53 | |
Vitamin K1 | A lipid cofactor that is required for normal blood clotting. | 93.01 | |
Nefazodone | A phenylpiperazine antidepressant that potently and selectively blocks postsynaptic serotonin (5-hydroxytryptamine; 5-HT) 5-HT2A receptors [30]. | 85.81 | |
Salmeterol | A β2 adrenergic receptor agonist (LABA) used in the treatment of severe persistent asthma and chronic obstructive pulmonary disease [31]. | 85.26 | |
Polidocanol | Local anesthetic and antipruritic component of lotions. Has also been approved for the treatment of varicose veins [32]. | 84.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, T.; Magalhães, R.; Sousa, S.F. Development and Validation of a Multi-Level Computational Protocol for Drug Repurposing in the Treatment of Bacterial Infections. Chem. Proc. 2022, 8, 24. https://doi.org/10.3390/ecsoc-25-11728
Vieira T, Magalhães R, Sousa SF. Development and Validation of a Multi-Level Computational Protocol for Drug Repurposing in the Treatment of Bacterial Infections. Chemistry Proceedings. 2022; 8(1):24. https://doi.org/10.3390/ecsoc-25-11728
Chicago/Turabian StyleVieira, Tatiana, Rita Magalhães, and Sérgio F. Sousa. 2022. "Development and Validation of a Multi-Level Computational Protocol for Drug Repurposing in the Treatment of Bacterial Infections" Chemistry Proceedings 8, no. 1: 24. https://doi.org/10.3390/ecsoc-25-11728
APA StyleVieira, T., Magalhães, R., & Sousa, S. F. (2022). Development and Validation of a Multi-Level Computational Protocol for Drug Repurposing in the Treatment of Bacterial Infections. Chemistry Proceedings, 8(1), 24. https://doi.org/10.3390/ecsoc-25-11728