Manufacturing and Testing of 3D-Printed Polymer Isogrid Lattice Cylindrical Shell Structures †
Abstract
:1. Introduction
2. Geometry and 3D Modeling
3. Manufacturing and 3D Printing
4. Compressive Testing and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huybrechts, S.; Hahn, S.E.; Meink, T. Grid stiffened structures: A survey of fabrication, analysis and design methods. In Proceedings of the 12th International Conference on Composite Materials (ICCM/I2), Paris, France, 5–9 July 1999; p. 10. [Google Scholar]
- Vasiliev, V.; Barynin, V.; Razin, A. Anisogrid composite lattice structures—Development and aerospace applications. Compos. Struct. 2012, 94, 1117–1127. [Google Scholar] [CrossRef]
- Abad, E.M.K.; Pasini, D.; Cecere, R. Shape optimization of stress concentration-free lattice for self-expandable Nitinol stent-grafts. J. Biomech. 2012, 45, 1028–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyi, A.F.M.; Ismail, A.E.; Taib, I.; Ibrahim, M.N. Stent classifications and effect of geometries on stent behaviour using finite element method. Int. J. Mech. Eng. Robot. Res. 2020, 9, 329–340. [Google Scholar] [CrossRef]
- Morozov, E.; Lopatin, A.; Nesterov, V. Finite-element modelling and buckling analysis of anisogrid composite lattice cylindrical shells. Compos. Struct. 2011, 93, 308–323. [Google Scholar] [CrossRef]
- Lai, C.; Wang, J.; Liu, C. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells. Appl. Compos. Mater. 2014, 21, 739–758. [Google Scholar] [CrossRef]
- Belardi, V.; Fanelli, P.; Vivio, F. Structural analysis and optimization of anisogrid composite lattice cylindrical shells. Compos. Part Eng. 2018, 139, 203–215. [Google Scholar] [CrossRef]
- Meyer, R.R.; Harwood, O.P.; Harmon, M.B.; Orlando, J.I. Isogrid Design Handbook; NASA Technical Report CR-124075; NASA Marshall Space Flight Center: Huntsville, AL, USA, 1973.
- De Nicola, F.; Totaro, G.; Lenzi, F.; Ferrigno, A. Mechanical properties of composite anisogrid shell structures. In Proceedings of the 59th International Astronautical Congress, Glasgow, SCT, UK, 9 September–3 October 2008. Number IAC-08.C2.4.4. [Google Scholar]
- Totaro, G.; Gürdal, Z. Optimal design of composite lattice shell structures for aerospace applications. Aerosp. Sci. Technol. 2009, 13, 157–164. [Google Scholar] [CrossRef]
- Totaro, G. Multilevel Optimization of Anisogrid Lattice Structures for Aerospace Applications. Ph.D. Thesis, Delft Technical University, Delft, NL, USA, 2011. [Google Scholar]
- Buragohain, M.; Velmurugan, R. Study of filament wound grid-stiffened composite cylindrical structures. Compos. Struct. 2011, 93, 1031–1038. [Google Scholar] [CrossRef]
- Fan, H.; Fang, D.; Jin, F. Mechanical properties of lattice grid composites. Acta Mech. Sin. 2008, 24, 409–418. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, Z.; Chen, L.; Fang, D. Deformation and failure mechanisms of lattice cylindrical shells under axial loading. Int. J. Mech. Sci. 2009, 51, 213–221. [Google Scholar] [CrossRef]
- Vasiliev, V.; Barynin, V.; Rasin, A. Anisogrid lattice structures—Survey of development and application. Compos. Struct. 2001, 54, 361–370. [Google Scholar] [CrossRef]
- Vasiliev, V.; Razin, A. Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos. Struct. 2006, 76, 182–189. [Google Scholar] [CrossRef]
- Del Olmo, E.; Grande, E.; Samartin, C.R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J. Lattice structures for aerospace applications. In Proceedings of the 12th European Conference on Spacecraft Structures, Materials and Environmental Testing, Noordwijk, NL, USA, 20–23 March 2012; Ouwehand, L., Ed.; ESA SP-691. European Space Agency: Paris, France, 2012; p. 6. [Google Scholar]
- Giusto, G.; Totaro, G.; Spena, P.; Nicola, F.D.; Caprio, F.D.; Zallo, A.; Grilli, A.; Mancini, V.; Kiryenko, S.; Das, S.; et al. Composite grid structure technology for space applications. Mater. Today Proc. 2021, 34, 332–340. [Google Scholar] [CrossRef]
- Azarov, A.V. Theory of composite grid shells. Mech. Solids 2013, 48, 57–67. [Google Scholar] [CrossRef]
- Vasiliev, V. Advanced Mechanics of Composite Materials and Structures; Elsevier: Amsterdam, NL, USA, 2018. [Google Scholar]
- Beerhorst, M.; Hühne, C. Optimization of axially compressed cylindrical grid structures using analytical and numerical models. Compos. Struct. 2016, 157, 155–162. [Google Scholar] [CrossRef]
- Abbasi, M.; Ghanbari, J. A comprehensive analytical model for global buckling analysis of general grid cylindrical structures with various cell geometries. Int. J. Comput. Methods Eng. Sci. Mech. 2021, 22, 477–499. [Google Scholar] [CrossRef]
- Totaro, G. Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells. Compos. Struct. 2012, 94, 446–452. [Google Scholar] [CrossRef]
- Delgado, X.M.; Merrett, C.G. Examination of the isotropy assumption in isogrid structures through analysis of nine isogrid variations. In AIAA Scitech 2021 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021; p. 19. [Google Scholar] [CrossRef]
- Challis, V.J.; Xu, X.; Zhang, L.C.; Roberts, A.P.; Grotowski, J.F.; Sercombe, T.B. High specific strength and stiffness structures produced using selective laser melting. Mater. Des. 2014, 63, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Maskery, I.; Aboulkhair, N.; Aremu, A.; Tuck, C.; Ashcroft, I. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 2017, 16, 24–29. [Google Scholar] [CrossRef]
- Li, M.; Lai, C.; Zheng, Q.; Han, B.; Wu, H.; Fan, H. Design and mechanical properties of hierarchical isogrid structures validated by 3D printing technique. Mater. Des. 2019, 168, 107664. [Google Scholar] [CrossRef]
- Ji, B.; Han, H.; Lin, R.; Li, H. Failure modes of lattice sandwich plate by additive-manufacturing and its imperfection sensitivity. Acta Mech. Sin. 2019, 36, 430–447. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, H.; Lin, G.; Jin, H.; Shen, X.; He, J.; Miao, J. Thermal performance of a 3D printed lattice-structure heat sink packaging phase change material. Chin. J. Aeronaut. 2021, 34, 373–385. [Google Scholar] [CrossRef]
- Cao, X.; Ji, B.; Li, Y.; An, X.; Fan, H.; Ke, L. Multi-failure analyses of additively manufactured lattice truss sandwich cylinders. Compos. Part Eng. 2021, 207, 108561. [Google Scholar] [CrossRef]
- Mancia, F.; Marchetti, M.; Regi, M.; Lionetti, S.; Marranzini, A.; Mazza, F.; Coluzzi, P.; Centro, C.; Materiali, S. Development of 3D advanced rapid prototyping multipurpose structures with micro and nano materials. In Cost Effective Manufacture via Net-Shape Processing; Meeting Proceedings RTO-MP-AVT-139; RTO: Neuilly-sur-Seine, France, 2006; Paper 20; pp. 20-1–20-24. [Google Scholar]
- Ananth, S.; Whitney, T.; Toubia, E. Buckling stability of additively manufactured isogrid. In Proceedings of the 33rd Technical Conference of the American Society for Composites, Seattle, WA, USA, 24 September 2018; DEStech Publications, Inc.: Lancaster, PA, USA, 2018; Volume 5, pp. 3180–3193. [Google Scholar] [CrossRef]
- MacDonald, E.; Espalin, D.; Doyle, D.; Muñoz, J.; Ambriz, S.; Coronel, J.; Williams, A.; Wicker, R. Fabricating patch antennas within complex dielectric structures through multi-process 3D printing. J. Manuf. Process. 2018, 34, 197–203. [Google Scholar] [CrossRef]
- Forcellese, A.; Simoncini, M.; Vita, A.; Pompeo, V.D. 3D printing and testing of composite isogrid structures. Int. J. Adv. Manuf. Technol. 2020, 109, 1881–1893. [Google Scholar] [CrossRef]
- Forcellese, A.; di Pompeo, V.; Simoncini, M.; Vita, A. Manufacturing of isogrid Compos. Struct. by 3D printing. Procedia Manuf. 2020, 47, 1096–1100. [Google Scholar] [CrossRef]
- Velasco-Hogan, A.; Xu, J.; Meyers, M.A. Additive manufacturing as a method to design and optimize bioinspired structures. Adv. Mater. 2018, 30, 1800940. [Google Scholar] [CrossRef]
- Reddy, A.H.; Davuluri, S.; Boyina, D. 3D printed lattice structures: A brief review. In Proceedings of the IEEE International Conference on Nanomaterials: Applications & Properties (NAP-2020), Sumy, Ukraine, 9–13 November 2020; IEEE: Piscataway, NJ, USA, 2020; p. 5. [Google Scholar] [CrossRef]
- Budynas, R.G.; Nisbett, K.J. Shigley’s Mechanical Engineering Design, 11th ed.; McGraw-Hill Education: New York, NY, USA, 2020; pp. 207–210. [Google Scholar]
Layer thickness [mm] | 0.1–0.3 |
Printing speed [mm/s] | 10–120 |
XY axis position accuracy [mm] | 0.012 |
Z axis position accuracy [mm] | 0.004 |
Printing material | ABS, PLA, ... |
Filament diameter [mm] | 1.75 |
Nozzle diameter [mm] | 0.4 (can be changed) |
Build size [mm] | 220 × 220 × 240 |
File format | STL, G-Code, OBJ |
Diameter [mm] | 1.75 ± 0.05 |
Printing temperature [C] | 205 ± 10 |
Specific weight [g/cm] | 1.24 |
Tensile modulus [MPa] | 3120 |
Yield strength [MPa] | 70 |
Ultimate strength [MPa] | N/A |
Strain at break [%] | 20 |
Strain at yield [%] | 5 |
Glass transition [C] | 57 |
a | e | D | L | Mass | Rib Length | Rib Section | Printing Time | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Configuration | [mm] | [mm] | [mm] | # | # | [mm] | [g] | [mm] | [mm] | Sim. [min] | Real [min] |
A | 1.6 | 2.4 | 40 | 10 | 4 | 66.90 | 5.58 | 20.17 | 3.84 | 55 | 87 |
B | 3 | 45.13 | 3.91 | 37 | 59 | ||||||
C | 2 | 23.37 | 2.24 | 19 | 30 | ||||||
D | 4 * | 47.13 | 4.50 | 41 | 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasques, C.M.A.; Gonçalves, F.C.; Cavadas, A.M.S. Manufacturing and Testing of 3D-Printed Polymer Isogrid Lattice Cylindrical Shell Structures. Eng. Proc. 2021, 11, 47. https://doi.org/10.3390/ASEC2021-11174
Vasques CMA, Gonçalves FC, Cavadas AMS. Manufacturing and Testing of 3D-Printed Polymer Isogrid Lattice Cylindrical Shell Structures. Engineering Proceedings. 2021; 11(1):47. https://doi.org/10.3390/ASEC2021-11174
Chicago/Turabian StyleVasques, César M. A., Fernando C. Gonçalves, and Adélio M. S. Cavadas. 2021. "Manufacturing and Testing of 3D-Printed Polymer Isogrid Lattice Cylindrical Shell Structures" Engineering Proceedings 11, no. 1: 47. https://doi.org/10.3390/ASEC2021-11174
APA StyleVasques, C. M. A., Gonçalves, F. C., & Cavadas, A. M. S. (2021). Manufacturing and Testing of 3D-Printed Polymer Isogrid Lattice Cylindrical Shell Structures. Engineering Proceedings, 11(1), 47. https://doi.org/10.3390/ASEC2021-11174