Effect of Annealing Temperature on the Microstructure, Mechanical Properties, and Electrical Conductivity of 4xxx Series Al-Based Alloys †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Properties and Electrical Conductivity
3.2. Morphology of Eutectic Si Particles
3.3. Microstructural Evolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagherian, M.A.; Mehranzamir, K. A comprehensive review on renewable energy integration for combined heat and power production. Energy Convers. Manag. 2020, 224, 113454. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, J. A review on aluminum alloy conductors influenced by alloying elements and thermomechanical treatments: Microstructure and properties. J. Mater. Res. 2023, 38, 1488–1509. [Google Scholar] [CrossRef]
- Khangholi, S.N.; Javidani, M.; Maltais, A.; Chen, X.G. Review on recent progress in Al–Mg–Si 6xxx conductor alloys. J. Mater. Res. 2022, 37, 670–691. [Google Scholar] [CrossRef]
- Nikzad Khangholi, S.; Javidani, M.; Maltais, A.; Chen, X.-G. Optimization of mechanical properties and electrical conductivity in Al–Mg–Si 6201 alloys with different Mg/Si ratios. J. Mater. Res. 2020, 35, 2765–2776. [Google Scholar] [CrossRef]
- Khangholi, S.N.; Javidani, M.; Maltais, A.; Chen, X.G. Effects of natural aging and pre-aging on the strength and electrical conductivity in Al-Mg-Si AA6201 conductor alloys. Mater. Sci. Eng. A 2021, 820, 141538. [Google Scholar] [CrossRef]
- Khangholi, S.N.; Javidani, M.; Maltais, A.; Chen, X.-G. Effect of Ag and Cu addition on the strength and electrical conductivity of Al-Mg-Si alloys using conventional and modified thermomechanical treatments. J. Alloys Compd. 2022, 914, 165242. [Google Scholar] [CrossRef]
- Ganesh, M.R.S.; Reghunath, N.J.; Levin, M.; Prasad, A.; Doondi, S.; Shankar, K.V. Strontium in Al–Si–Mg Alloy: A Review. Met. Mater. Int. 2022, 28, 1–40. [Google Scholar] [CrossRef]
- Cui, X.; Cui, H.; Wu, Y.; Liu, X. The improvement of electrical conductivity of hypoeutectic Al-Si alloys achieved by composite melt treatment. J. Alloys Compd. 2019, 788, 1322–1328. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Chen, X.; Yin, Y.; He, Y.; Zhou, Z.; Guan, R. Microstructure evolution of eutectic Si in Al-7Si binary alloy by heat treatment and its effect on enhancing thermal conductivity. J. Mater. Res. Technol. 2020, 9, 8780–8786. [Google Scholar] [CrossRef]
- Mulazimoglu, M.H.; Drew, R.A.L.; Gruzleski, J.E. The electrical conductivity of cast Al−Si alloys in the range 2 to 12.6 wt pct silicon. Metall. Trans. A 1989, 20, 383–389. [Google Scholar] [CrossRef]
- Mulazimoglu, M.H.; Drew, R.A.L.; Gruzleski, J.E. The effect of strontium on the electrical resistivity and conductivity of aluminum-silicon alloys. Metall. Trans. A 1991, 18, 941–947. [Google Scholar] [CrossRef]
- Mulazimoglu, M.H.; Drew, R.A.L.; Gruzleski, J.E. Solution Treatment Study of Cast Al–Si Alloys by Electrical Conductivity. Can. Metall. Q. 1989, 28, 251–258. [Google Scholar] [CrossRef]
- Guo, J.; Guan, Z.-P.; Yan, R.-F.; Ma, P.-K.; Wang, M.-H.; Zhao, P.; Wang, J.-G. Effect of Modification with Different Contents of Sb and Sr on the Thermal Conductivity of Hypoeutectic Al-Si Alloy. Metals 2020, 10, 1637. [Google Scholar] [CrossRef]
- Ye, H.; Cui, X.; Li, X.; Cui, H.; Zhang, B.; Li, H.; Pan, Y.; Feng, R.; Wu, Y.; Liu, X. Fabrication of hypoeutectic Al-4Si alloy with high electrical conductivity, high plasticity and medium strength by the dual treatment of Al matrix and eutectic Si microstructure. J. Alloys Compd. 2021, 885, 161117. [Google Scholar] [CrossRef]
- Marcantoni, G.E. From Molten Metal to 3.2 mm Wire for Mechanical Applications. In Light Metals 2012; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 251–255. [Google Scholar]
- Lewis, D.M. The production of non-ferrous metal slab and bar by continuous-casting and rolling methods. Metall. Rev. 1961, 6, 143–192. [Google Scholar] [CrossRef]
- Stefanescu, D.M.; Davis, J.R.; Destefani, J.D. Metals Handbook, Vol. 15—Casting. ASM Int. 2008, 15, 937. [Google Scholar]
- Beausir, B.; Fundenberger, J.-J. Analysis Tools for Electron and X-ray Diffraction, ATEX–Software, Université de Lorraine-Metz. 2017. Available online: www.atex-software.eu (accessed on 10 July 2023).
- ASTM B557M; Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products. ASTM: West Conshohocken, PA, USA, 2023.
- ASTM B193; Standard Test Method for Resistivity of Electrical Conductor Materials. ASTM: West Conshohocken, PA, USA, 2020. [CrossRef]
- ISO 6722-2; Road Vehicles—60 V and 600 V Single-Core Cables—Part 2: Dimensions, Test Methods and Requirements for Aluminium Conductor Cables. ISO: Geneva, Switzerland, 2019.
- ASTM B800; Standard Specification for 8000 Series Aluminum Alloy Wire for Electrical Purposes-Annealed and Intermediate Tempers. ASTM: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM B609/B609M; International: Standard Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes. ASTM: West Conshohocken, PA, USA,, 2021. [CrossRef]
- Toberer, E.S.; Baranowski, L.L.; Dames, C. Advances in Thermal Conductivity. Annu. Rev. Mater. Res. 2012, 42, 179–209. [Google Scholar] [CrossRef]
- Vandersluis, E.; Ravindran, C.; Bamberger, M. The Detriment of Coherency Strains to the Electrical Conductivity of Naturally-Aged B319 Al Alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 5923–5931. [Google Scholar] [CrossRef]
- Wang, M.J.; Sun, C.Y.; Fu, M.W.; Liu, Z.L.; Qian, L.Y. Study on the dynamic recrystallization mechanisms of Inconel 740 superalloy during hot deformation. J. Alloys Compd. 2020, 820, 153325. [Google Scholar] [CrossRef]
- Yuan, L.; Gou, F.; Sun, D.; Li, Z.; Xue, Y. The Effects of Cold Rolling and Annealing on the Microstructure Evolution of Ordered C-2000 Alloy during Metallic Wire Preparation. Metals 2023, 13, 651. [Google Scholar] [CrossRef]
- Mofarrehi, M.; Javidani, M.; Chen, X.G. Effect of Mn content on the hot deformation behavior and microstructure evolution of Al–Mg–Mn 5xxx alloys. Mater. Sci. Eng. A 2022, 845, 143217. [Google Scholar] [CrossRef]
Alloy | Elements | ||||||||
---|---|---|---|---|---|---|---|---|---|
Si | Fe | Cu | Mg | Ti | V | B | Sr | Al | |
AA4043 | 4.9 | 0.10 | 0.03 | 0.001 | 0.008 | 0.001 | 0.004 | 0.029 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoshghadam-Pireyousefan, M.; Javidani, M.; Maltais, A.; Lévesque, J.; Chen, X.-G. Effect of Annealing Temperature on the Microstructure, Mechanical Properties, and Electrical Conductivity of 4xxx Series Al-Based Alloys. Eng. Proc. 2023, 43, 14. https://doi.org/10.3390/engproc2023043014
Khoshghadam-Pireyousefan M, Javidani M, Maltais A, Lévesque J, Chen X-G. Effect of Annealing Temperature on the Microstructure, Mechanical Properties, and Electrical Conductivity of 4xxx Series Al-Based Alloys. Engineering Proceedings. 2023; 43(1):14. https://doi.org/10.3390/engproc2023043014
Chicago/Turabian StyleKhoshghadam-Pireyousefan, Mohammad, Mousa Javidani, Alexandre Maltais, Julie Lévesque, and X.-Grant Chen. 2023. "Effect of Annealing Temperature on the Microstructure, Mechanical Properties, and Electrical Conductivity of 4xxx Series Al-Based Alloys" Engineering Proceedings 43, no. 1: 14. https://doi.org/10.3390/engproc2023043014
APA StyleKhoshghadam-Pireyousefan, M., Javidani, M., Maltais, A., Lévesque, J., & Chen, X. -G. (2023). Effect of Annealing Temperature on the Microstructure, Mechanical Properties, and Electrical Conductivity of 4xxx Series Al-Based Alloys. Engineering Proceedings, 43(1), 14. https://doi.org/10.3390/engproc2023043014