Aspects Regarding of a UGV Fire Fighting Thermal Shield †
Abstract
:1. Introduction
2. The Thermal Shield
2.1. Materials Used
2.2. Geometrical Characteristics
3. The Analytical Model
3.1. The Thermodynamic Laws
3.2. Analytical Method for Determining the Temperature Variation in the Thermal Shield
- (i)
- With no stainless-steel shields, the net heat exchange between the two parallel infinite planes is:
- (ii)
- Placing thermal radiation shields does not remove or add heat to the system, but, in equilibrium conditions, the plates of the thermal shields reach the T2 and T3 temperatures, considering that both faces of the shield plates have the same emissivity:
4. Simulating the Behavior of the Thermal Shield through the Finite Element Method
5. The Experimental Study Regarding the Behavior of the Thermal Shield under the Action of Fire
6. Conclusions
- The multi-parameter estimation developed for an inverse problem in which we have multiple constant parameters, such as the material properties, are close to the statistical data corresponding to the stainless-steel open flame exposure;
- After the simulation, we could identify the parameters which need to be measured and which should allow recorrelating the numerical analysis calculations with MEF.
- The evolution of the heating phenomenon in time demonstrates that due to the special properties of the stainless steel, the temperature gradients rise moderately;
- Introducing the second wall to the protection shield demonstrates a decrease in temperature on the exposed side;
- In the case of the simulation, upon a nominal analysis the temperature differences can have uncertainties and sensitivity differences, a fact that must be checked during the experiments;
- In the case of a hot air jet (open flame), as previously mentioned, the problem of an inverse analysis arises in the gas fluid jet modelling (however, this is not the subject of this research);
- Unlike the jet temperature, the surface of the shield gets heated up in time, with different gradients for the same initial simulated (a fact which can be explained due to the molecular structure of the metal from which the shield is made).
Future Developments Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grigore, L.Ș.; Soloi, A.; Tiron, O.; Răcuciu, C. Fundamentals of Autonomous Robot Classes with a System of Stabilization of the Gripping Mechanism. Adv. Mater. Res. 2013, 646, 164–170. [Google Scholar] [CrossRef]
- Nuță, I.; Orban, O.; Grigore, L.Ș. Development and improvement of technology in emergency response. Procedia Econ. Financ. 2015, 32, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Peskoe-Yang, L. Paris Firefighters Used This Remote-Controlled Robot to Extinguish the Notre Dame Blaze. In IEEE Spectrum: Technology, Engineering, and Science News; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Raghavendran, P.S.; Suresh, M.; Ranjith Kumar, R.; Ashok Kumar, R.; Mahendran, K.; Swathi, S.; Kamesh, L.; Sanjay, R. An Intelligent Remote-Controlled Fire Fighting Machine for Autonomous Protection of Human being. Int. J. Adv. Res. Sci. Eng. Technol. 2018, 5, 7620–7626. [Google Scholar]
- Nikitin, V.; Golubin, S.; Belov, R.; Gusev, V.; Andrianov, N. Development of a robotic vehicle complex for wildfire-fighting by means of fire-protection roll screens. In IOP Conference Series: Earth and Environmental Science; IOP Conference Series; Earth and Environmental Science: Bristol, UK, 2019; Volume 226, p. 012003. [Google Scholar]
- Steopan, M.; Schonstein, C.; Bogdan, A.V. Mobile Robotic Platform for Firefighting—Concept Development, Finissing and Mockup Buildup. J. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2020, 63, 269–274. [Google Scholar]
- Kurvinen, K.; Smolander, P.; Pöllänen, R.; Kuukankorpi, S.; Kettunen, M.; Lyytinen, J. Design of a Radiation Surveillance Unit for an Unmanned Aerial Vehicle. J. Environ. Radioact. 2005, 81, 1–10. [Google Scholar] [CrossRef]
- Yukihisa, S.; Takeshi, S.; Yukiyasu, N.; Atsuya, K.; Tatsuo, T. The Aerial Radiation Monitoring in Japan after the Fukushima Daiichi Nuclear Power Plant Accident. Prog. Nucl. Sci. Technol. 2014, 4, 76–80. [Google Scholar]
- Lowdon, M.; Martin, P.G.; Hubbard, M.; Taggart, M.; Connor, D.T.; Verbelen, Y.; Sellin, P.; Scott, T.B. Evaluation of Scintillator Detection Materials for Application within Airborne Environmental Radiation Monitoring. Sensors 2019, 19, 3828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Hutson, C.; Knighton, J.; Hermann, G.; Scott, T. Radiation Tolerance Testing Methodology of Robotic Manipulator Prior to Nuclear Waste Handling. Front. Robot. AI 2020, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Gao, W.; Zhao, S.; Cao, W.; Du, Z. Robot Protection in the Hazardous Environments: Chapter 4; InTechOpen: London, UK, 2017. [Google Scholar]
- Oh, Y.T. Study of Mechanical Characteristics and Thermal Barrier Coating on Firefighting Robot. Int. J. Mech. Mechatron. Eng. Ijmme-Ijens 2018, 18, 83–88. [Google Scholar]
- AlHaza, T.; Alsadoon, A.; Alhusinan, Z.; Jarwali, M.; Alsaif, K. New Concept for Indoor Fire Fighting Robot. Procedia Soc. Behav. Sci. 2015, 195, 2343–2352. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Pan, L.; Zhao, G. An Improved Near-Field Computer Vision for Jet Trajectory Falling Position Prediction of Intelligent Fire Robot. Sensors 2020, 20, 7029. [Google Scholar] [CrossRef]
- Anderson, J.; Lee, D.J.; Schoenberger, R.; Wei, Z.; Archibald, Z.K. Semi-Autonomous Unmanned Ground Vehicle Control System. In Unmanned Systems Technology VIII; Defense and Security Symposium: Orlando, FL, USA, 2006. [Google Scholar]
- Grigore, L.Ș.; Priescu, I.; Joița, D.; Holban-Oncioiu, I. The Integration of Collaborative Robot Systems and Their Environmental Impacts. Process 2020, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- McNamee, M.; Marlair, G.; Truchot, B.; Meacham, B. Research Roadmap: Environmental Impact of Fires in the Built Environment—Final Report; NFPA—National Fire Protection Association: Quincy, MA, USA, 2020. [Google Scholar]
- Akhlouf, M.A.; Castro, N.A.; Couturier, A. Unmanned Aerial Systems for Wildland and Forest Fires: Sensing, Perception, Cooperation and Assistance. arXiv 2020, arXiv:200413883. [Google Scholar]
- Cruz, H.; Eckert, M.; Meneses, J.; Martínez, J.-F. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs). Sensors 2016, 16, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, M.J.; Moutinho, A.; Almeida, M. Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems. Sensors 2020, 20, 6803. [Google Scholar] [CrossRef]
- Viedma, O.; Almeida, D.R.A.; Moreno, J.M. Postfire Tree Structure from High-Resolution LiDAR and RBR Sentinel 2A Fire Severity Metrics in a Pinus halepensis-Dominated Burned Stand. Remote Sens. 2020, 12, 3554. [Google Scholar] [CrossRef]
- Kwet, C.; Lam, Y.; Man, L.; Koonjul, Y.; Nagowah, L. A low cost autonomous unmanned ground vehicle. Future Comput. Inform. J. 2018, 3, 304–320. [Google Scholar]
- Tamura, Y.; Amano, H.; Ota, J. Analysis of Firefighting Skill with a teleoperated robot. Robomech J. 2020, 7, 14. [Google Scholar] [CrossRef]
- Muppidi, S. Development of a Low-Cost Controller and Navigation System for Unmanned Ground Vehicle. Bachelor’s Thesis, University of Ontario Institute of Technology, Oshawa, ON, Canada, 2008. [Google Scholar]
- Patle, B.K.; Ganesh-Babu, L.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A. A review: On path strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Berns, K.; Nezhadfard, A.; Tosa, M.; Balta, H.; De Cubber, G. Unmanned Ground Robots for Rescue Tasks: Chapter 4; InTechOpen: London, UK, 2017. [Google Scholar]
- Oh, S.B.; Chung, Y.H. Smart and Safe Vehicle Monitoring with Fuzzy Integral and Haar-like Features. Int. J. Comput. Commun. Control 2013, 8, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Väljaots, E.; Sell, R.; Kaeeli, M. Motion and Energy Efficiency Parameters of Unmanned Ground Vehicle. Period. Solid State Phenom. 2015, 220, 934–939. [Google Scholar] [CrossRef]
- Grant, C.; Hamins, A.; Bryner, N.; Jones, A.; Koepke, G. Research Roadmap for Smart Fire Fighting; Summary Report; NIST—National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Han, Y.; Luan, W.; Jiang, Y.; Zhang, X. Protection of electronic Devices on nuclear Rescue robot: Passive thermal control. J. Appl. Therm. Eng. 2016, 101, 224–230. [Google Scholar] [CrossRef]
- Sevinchan, E. Investigation of Thermal Management Options for Robots. Master’s Thesis, University of Ontario Institute of Technology, Oshawa, ON, Canada, 2018. [Google Scholar]
- Ciupitu, L. Adaptive Balancing of Robots and Mechatronic Systems. Robotics 2018, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Kulich, M.; Kubalík, J.; Přeučil, L. An Integrated Approach to Goal Selection in Mobile Robot Exploration. Sensors 2019, 19, 1400. [Google Scholar] [CrossRef] [Green Version]
- Garzón, M.; Valente, J.; Zapata, D.; Barrientos, A. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas. Sensors 2013, 13, 1247–1267. [Google Scholar] [CrossRef] [Green Version]
- Szrek, J.; Zimroz, R.; Wodecki, J.; Michalak, A.; Góralczyk, M.; Worsa-Kozak, M. Application of the Infrared Thermography and Unmanned Ground Vehicle for Rescue Action Support in Underground Mine—The AMICOS Project. Remote Sens. 2021, 13, 69. [Google Scholar] [CrossRef]
- Ștefan, A.; Ștefan, A.; Constantin, D.; Mateescu, C.; Cartal, L.A. Aspects of kinematics and dynamics for Payload UAVs. In Proceedings of the 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 25–27 June 2015; pp. WF1–WF4. [Google Scholar]
- Martínez, J.L.; Morales, J.; Sánchez, M.; Morán, M.; Reina, A.J.; Fernández-Lozano, J.J. Reactive Navigation on Natural Environments by Continuous Classification of Ground Traversability. Sensors 2020, 20, 6423. [Google Scholar] [CrossRef]
- Wong, J.Y. Terramechanics and Off-Road Vehicle Engineering: Terrain Behaviour, Off-Road Vehicle Performance and Design, 2nd ed.; Butterworth Heinemann: Oxford, UK, 2009; p. 488, ISBN 978-0-75-068561-0, e-ISBN 978-0-08-094253-7. [Google Scholar]
- Ciobotaru, T. Semi-Empiric Algorithm for Assessment of the Vehicle Mobility. Leonardo Electron. J. Pract. Technol. 2009, 8, 19–30. [Google Scholar]
- Yu, W.; Chuy, O., Jr.; Collins, E.G., Jr.; Hollis, P. Dynamic Modeling of a Skid-Steered Wheeled Vehicle with Experimental Verification. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009. [Google Scholar]
- Alexa, O.; Coropețchi, I.; Vasile, A.; Oncioiu, I.; Grigore, L.Ș. Considerations for Determining the Coefficient of Inertia Masses for a Tracked Vehicle. Sensors 2020, 20, 5587. [Google Scholar] [CrossRef]
- Wong, J.Y.; Chiang, C.F. A general theory for skid steering of tracked vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2001, 215, 343–355. [Google Scholar] [CrossRef]
- Cojocaru-Greblea, T.; Bontoș, D.; Vasiliu, N.; Dobre, A. Redundant Steering Systems for Articulated Vehicles. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Sofia, Bulgaria, 27 June–6 July 2017. [Google Scholar]
- Trucchia, A.; D’Andrea, M.; Baghino, F.; Fiorucci, P.; Ferraris, L.; Negro, D.; Gollini, A.; Severino, M. PROPAGATOR: An Operational Cellular-Automata Based Wildfire Simulator. Fire 2020, 3, 26. [Google Scholar] [CrossRef]
- Ott, C.W.; Adhikari, B.; Alexander, S.P.; Hodza, P.; Xu, C.; Minckley, T.A. Predicting Fire Propagation across Heterogeneous Landscapes Using WyoFire: A Monte Carlo-Driven Wildfire Model. Fire 2020, 3, 71. [Google Scholar] [CrossRef]
- Cicione, A.; Gibson, L.; Wade, C.; Spearpoint, M.; Walls, R.; Rush, D. Towards the Development of a Probabilistic Approach to Informal Settlement Fire Spread Using Ignition Modelling and Spatial Metrics. Fire 2020, 3, 67. [Google Scholar] [CrossRef]
- Wallace, L.; Hally, B.; Hillman, S.; Jones, S.D.; Reinke, K. Terrestrial Image-Based Point Clouds for Mapping Near-Ground Vegetation Structure: Potential and Limitations. Fire 2020, 3, 59. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ye, Z.Y.; Li, K.F. Multi-sensor information fusion detection system for fire through back propagation neural network. PLoS ONE 2020, 15, 13. [Google Scholar] [CrossRef]
- Kim, J.H. Autonomous Navigation, Perception and Probabilistic Fire Location for an Intelligent Firefighting Robot. Ph.D. Thesis, Mechanical Engineering to the Faculty Virginia Polytechnic Institute Blacksburg, Blacksburg, VA, USA, 2014. [Google Scholar]
- Castro Jiménez, L.E.; Edgar, A. Martínez-García, E.A. Thermal Image Sensing Model for Robotic Planning and Search. Sensors 2016, 16, 1253. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.X.; Dao, V.T.N.; Torero, J.L.; Maluk, C.; Bisby, L. Effects of temperature and temperature gradient on concrete performance at elevated temperatures. Adv. Struct. Eng. 2018, 21, 1223–1233. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Choe, L.; Varma, A.H. Fire Design of Steel Columns: Effects of Thermal Gradients. J. Constr. Steel Res. 2014, 93, 107–118. [Google Scholar] [CrossRef]
- Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning. Sensors 2020, 20, 5493. [Google Scholar] [CrossRef] [PubMed]
- IMOA—International Molybdenum Association. Stainless Steel Fire Performance & Radiant Heat Transfer. Available online: https://www.imoa.info/molybdenum-uses/molybdenum-grade-stainless-steels/architecture/fire-resistance.php (accessed on 13 January 2021).
- Silva, L.S.; Santiago, A. Behaviour of steel joints under fire loading. J. Steel Compos. Struct. 2005, 5, 485–513. [Google Scholar] [CrossRef]
- Zak, C.; Urban, J.; Tran, V.; Fernandez-Pello, C. Flaming Ignition Behavior of Hot Steel and Aluminum Spheres Landing in Cellulose Fuel Beds. Fire Saf. Sci. 2014, 11, 1368–1378. [Google Scholar] [CrossRef]
- Brucker, K.A.; Majdalani, J. Effective thermal conductivity of common geometric shapes. Int. J. Heat Mass Transf. 2005, 48, 4779–4796. [Google Scholar] [CrossRef]
- Ryzhenkov, A.V.; Pogorelov, S.I.; Loginova, N.A.; Mednikov, A.F.; Tkhabisimov, A.B. Radiant heat transfer reduction methods in heat insulation of power equipment. Wit Trans. Eng. Sci. 2016, 106, 107–114. [Google Scholar]
- Tahmasbi, V.; Noori, S. Thermal Analysis of Honeycomb Sandwich Panels as Substrate of Ablative Heat Shield. J. Thermophys. Heat Transf. 2017, 32, 1–12. [Google Scholar] [CrossRef]
- Kantor, R. Modelling of a coupled radiation-conduction heat transfer through a heat shield in vacuum thermal isolation applications, IX International Conference on Computational Heat and Mass Transfer. Procedia Eng. 2016, 157, 271–278. [Google Scholar] [CrossRef] [Green Version]
- SMOOTH—Smart Robots for Fighting. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5bb6ea8f9&appId=PPGMS (accessed on 14 January 2021).
- Lundberg, C. Assessment and Evaluation of Man-portable Robots for High-risk Professions in Urban Settings. Perform. Metr. Intell. Syst. 2007, 76–83. [Google Scholar] [CrossRef]
- Supacat All Terrain Mobility Platform (ATMP) and Springer. Available online: https://thinkdefence.wordpress.com/supacat-terrain-mobility-platform-atmp/ (accessed on 14 January 2021).
- Li, S.; Feng, C.; Niu, Y.; Shi, L.; Wu, Z.; Song, H. A Fire Reconnaissance Robot Based on SLAM Position, Thermal Imaging Technologies, and AR Display. Sensors 2019, 19, 5036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.F.; Liew, S.M.; Alkahari, M.R.; Ranjit, S.S.S.; Said, M.R.; Chen, W.; Rauterberg, G.W.M.; Sivakumar, D. Fire Fighting Mobile Robot: State of the Art and Recent Developmen. Aust. J. Basic Appl. Sci. 2013, 7, 220–230. [Google Scholar]
- Liu, P.; Yu, H.; Cang, S.; Vladareanu, L. Robot-Assisted Smart Firefighting and Interdisciplinary Perspectives. In Proceedings of the 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016; pp. 395–401. [Google Scholar]
- Grigore, L.Ș.; Priescu, I.; Grecu, D.L. Applied Artificial Intelligence in Fixed and Mobile Robotic Systems, Cap 4 Terrestrial Mobile Robots; AGIR (General Association of Engineers from Romania): Bucharest, Romania, 2020; p. 703. ISBN 978-973-72-0767-8. [Google Scholar]
- Silk, E. Radiative Heat Transfer Analysis. In Introduction to Spacecraft Thermal Design; Cambridge Aerospace Series; Cambridge University Press: Cambridge, UK, 2020; pp. 64–113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigore, L.Ș.; Ștefan, A.; Oncioiu, I.; Molder, C.; Gorgoteanu, D.; Constantin, D.; Bălașa, R.-I. Aspects Regarding of a UGV Fire Fighting Thermal Shield. Eng. Proc. 2021, 6, 83. https://doi.org/10.3390/I3S2021Dresden-10082
Grigore LȘ, Ștefan A, Oncioiu I, Molder C, Gorgoteanu D, Constantin D, Bălașa R-I. Aspects Regarding of a UGV Fire Fighting Thermal Shield. Engineering Proceedings. 2021; 6(1):83. https://doi.org/10.3390/I3S2021Dresden-10082
Chicago/Turabian StyleGrigore, Lucian Ștefăniță, Amado Ștefan, Ionica Oncioiu, Cristian Molder, Damian Gorgoteanu, Daniel Constantin, and Răzvan-Ionuț Bălașa. 2021. "Aspects Regarding of a UGV Fire Fighting Thermal Shield" Engineering Proceedings 6, no. 1: 83. https://doi.org/10.3390/I3S2021Dresden-10082
APA StyleGrigore, L. Ș., Ștefan, A., Oncioiu, I., Molder, C., Gorgoteanu, D., Constantin, D., & Bălașa, R.-I. (2021). Aspects Regarding of a UGV Fire Fighting Thermal Shield. Engineering Proceedings, 6(1), 83. https://doi.org/10.3390/I3S2021Dresden-10082