Carrier Mobility in Semiconductors at Very Low Temperatures †
Abstract
:1. Introduction
2. Experimental Details
3. Carrier Mobility and Concentration
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Balestra, F.; Ghibaudo, G. (Eds.) Device and Circuit Cryogenic Operation for Low Temperature Electronics; Kluwer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Gutierrez-D, E.A.; Deen, M.J.; Claeys, C. (Eds.) Low Temperature Electronics: Physics, Devices, Circuits, and Applications; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Sze, S.M. Physics of Semiconductor Devices; Wiley: New York, NY, USA, 1981. [Google Scholar]
- ATLAS User Manual. Available online: http://www.silvaco.com (accessed on 11 April 2020).
- Klaassen, D.B.M. A unified mobility model for device simulation—I model equations and concentration dependence. Solid State Electron. 1992, 35, 953–959. [Google Scholar] [CrossRef]
- Klaassen, D.B.M. A unified mobility model for device simulation—II temperature dependence of carrier mobility and lifetime. Solid State Electron. 1992, 35, 961–967. [Google Scholar] [CrossRef]
- Jaeger, R.C.; Gaensslen, F.G. Simulation of impurity freezeout through numerical solution of Poisson´s equation with application to MOS device behavior. IEEE Trans. Electr. Dev. 1980, 27, 914–920. [Google Scholar] [CrossRef]
- Reiche, M.; Kittler, M. Electronic and optical properties of dislocations in silicon. Crystals 2016, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Schenk, A.; Altermatt, P.P.; Schmithüsen, B. Physical model of incomplete ionization for silicon device simulation. In Proceedings of the 2006 International Conference on Simulation of Semiconductor Processes and Devices, Monterey, CA, USA, 6–8 September 2006. [Google Scholar]
- Altermatt, P.P.; Schenk, A.; Heiser, G. A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. establishing the model in Si: P. J. Appl. Phys. 2006, 100, 113714. [Google Scholar]
- Forster, M.; Cuevas, A.; Fourmond, E.; Rougieux, F.E.; Lemiti, M. Impact of incomplete ionization of dopants on the electrical properties of compensated p-type silicon. J. Appl. Phys. 2012, 111, 043701. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobehn-Steinhäuser, I.; Reiche, M.; Schmelz, M.; Stolz, R.; Fröhlich, T.; Ortlepp, T. Carrier Mobility in Semiconductors at Very Low Temperatures. Eng. Proc. 2021, 6, 86. https://doi.org/10.3390/I3S2021Dresden-10086
Tobehn-Steinhäuser I, Reiche M, Schmelz M, Stolz R, Fröhlich T, Ortlepp T. Carrier Mobility in Semiconductors at Very Low Temperatures. Engineering Proceedings. 2021; 6(1):86. https://doi.org/10.3390/I3S2021Dresden-10086
Chicago/Turabian StyleTobehn-Steinhäuser, Ingo, Manfred Reiche, Matthias Schmelz, Ronny Stolz, Thomas Fröhlich, and Thomas Ortlepp. 2021. "Carrier Mobility in Semiconductors at Very Low Temperatures" Engineering Proceedings 6, no. 1: 86. https://doi.org/10.3390/I3S2021Dresden-10086
APA StyleTobehn-Steinhäuser, I., Reiche, M., Schmelz, M., Stolz, R., Fröhlich, T., & Ortlepp, T. (2021). Carrier Mobility in Semiconductors at Very Low Temperatures. Engineering Proceedings, 6(1), 86. https://doi.org/10.3390/I3S2021Dresden-10086