Effect of Titanium Oxide (TiO2) on Natural Dyes for the Fabrication of Dye-Sensitized Solar Cells †
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Hydrothermal Preparation of TiO2 Thin Film
2.2. Preparation of TCO (ITO) Glass
2.3. Preparation of TiO2/Dye Composite
3. Presentation of Results and Discussion
Characterization of TiO2 and Its Composite Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zumdahl Steven, S. Chemical Principles, 6th ed.; Houghton Mufflin Company: Boston, MA, USA, 2009; p. A23. [Google Scholar]
- Su, C.C.; Hung, W.C.; Lin, C.J.; Chien, S.H. The Preparation of Composite TiO2 Electrodes for Dye Sensitized Solar Cells. J. Chin. Chem. Soc. 2010, 57, 1131. [Google Scholar] [CrossRef]
- Park, N.G.; Vande, L.J.; Frank, A.J. Comparison of Dye Sensitized Rutile and Anatase—Based TiO2 Solar Cells. J. Phys. Chem. B 2000, 104, 8989. [Google Scholar] [CrossRef]
- Shi, J.; Le Magner, M. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Nutr. 2000, 20, 293. [Google Scholar]
- Adenike, O.B.; Henry, O.B.; Ibrahim, T.A. Dye Sensitized Nanocrystalline Titania Solar Cell Using Laali Stem Bark (Lawsonia inermis). Transnatl. J. Sci. Technol. 2012, 2, 60. [Google Scholar]
- Eyekpegha, O.F.; Ezeh, M.I. Comparative Study Between Zobo and Tomato Dye on the Fabrication of Dye Sensitized Solar Cell Using ITO/TiO2/ZnO/Dye Sensitized. In Proceedings of the 1st African International Conference/Workshop on Application of Nanotechnology to Energy, Health and Environment, UNN, Enugu, Nigeria, 23–24 March 2014; p. 38. [Google Scholar]
- Ojegu, E.; Omamoke, O.E. Enaroseha. Optical properties of the anatase phase of titanium Dioxide thin films prepared by Electrostatic Spray Deposition. Niger. J. Sci. Environ. 2020, 18, 120. [Google Scholar]
- Marcus, H.; Villy, S. Dynamics of Electron Injection and Recombination of Dye—Sensitized TiO2. Part. J. Phys. Chem. B 1998, 102, 10505. [Google Scholar]
- Enaroseha, O.; Ifayefunmi, O.S.; Oyebola, O.O. Rate Equation Analysis of the 2.9 µm Holmium—Doped Potassium Lead Bromide (Ho:KPb2Br5) Transition for Diode Laser Application. J. Niger. Assoc. Math. Phys. 2016, 37, 301. [Google Scholar]
- Okoli, L.U.; Ozuomba, J.O.; Ekpunobi, A.J.; Ekwo, P.I. Anthocyanin-dyed TiO2 Electrode and its Performance on Dye Sensitized Solar Cell. Res. J. Recent Sci. 2012, 1, 22. [Google Scholar]
- Fernando, J.M.R.C.; Senadeera, G.K.R. Natural Anthocyanin as photo sensitizers for dye-sensitized solar devices. Curr. Sci. 2008, 5, 663. [Google Scholar]
- Wasiu, B.A.; Enock, O.D.; Damilola, A.B.; Samson, O.A.; Fatai, O.O.; Bukola, O.B.; Ezeh, M.I.; Osuji, R.U. Dye-modified ZnO Nanohybrids: Optical Properties of the Potential Solar Cell Nanocomposites. Int. Nanoletters 2017, 7, 171. [Google Scholar]
- Lee, K.E.; Gomez, M.A.; Elouatik, S.; Demopoulos, G.P. Further understanding of Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging. Langmuir 2010, 26, 9575. [Google Scholar] [CrossRef] [PubMed]
- Fillinger, A.; Parkinson, B.A. The Adsorption behavior of a Ruthenium-Based Sensitizing Dye to Nanocrystalline TiO2: Coverage Effects on the External and Internal Sensitization Quantum Yields. J. Electrochem. Soc. 1999, 146, 4559. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Demirci, M.; Selen, S.; Toydemir, G.; Boyacioglu, D.; Capanoglu, E. Home Processing of Tomatoes (Solanum lycopersicum): Effects on in Vitro Bio—Accessibility of Total lycopene, phenolics, flavonoids, and antioxidant capacity. J. Sci. Food Agric. 2014, 11, 2225. [Google Scholar] [CrossRef] [PubMed]
- Shinde, D.R.; Tambade, P.S.; Gadave, K.M. Dye-sensitized solar cells with a naturally occurring pigment Lycopene as a photosensitizer for Ziroconium dioxide: An experiment and theoretical study. J. Mater. Sci. Mater. Electron. 2017, 17, 11311. [Google Scholar] [CrossRef]
- Hirose, F.; Yoshida, C.; Nakajima, S.; Shoji, Y.; Itoh, E.; Momiyama, K.; Kanomata, K. In Situ Observation of N719 on TiO2 in Dye-sensitized Solar Cells by IR Absorption Spectroscopy. Electrochem. Solid-State Lett. 2012, 12, B167. [Google Scholar] [CrossRef]
- Aigbe, U.O.; Onyancha, R.B.; Ukhurebor, K.E.; Okundaye, B.; Aigbe, E.; Enaroseha, O.O.E.; Obodo, K.; Osibote, O.A.; El Nemr, A.; Noto, L.L.; et al. Utility of Magnetic Nanomaterials for Theranostic Nanomedicine. In Magnetic Nanomaterials: Synthesis, Characterization and Applications; Aigbe, U.O., Ukhurebor, K.E., Onyancha, R.B., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2023; Chapter 3; pp. 47–86. [Google Scholar]
- Anthocyanin Wikipedia Simple English. Available online: https://simple.wikipedia.org/wiki/Anthocyanin (accessed on 10 November 2023).
- Ezeh, M.I.; Okujagu, C.U.; Ezema, F.I. Building a Solar Panel for Electricity Generation in the Fabrication of Dye Sensitized Solar Cell. Int. J. Photochem. Photobiol. 2021, 5, 1–6. [Google Scholar]
- Mishra, A. Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angew. Chem. Int. Ed. 2009, 48, 2474. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, P.; Deepa, K.; Madhavan, J.; Senthil, S. Fabrication of DSSC with Nanostructured TiO2 Photoanode and Natural Dye Sensitizer Extracted from Fruits of Phyllanthus Reticulates. Therm. Sect. Sci. Technol. 2018, 4, 437. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezeh, I.M.; Enaroseha, O.O.E.; Agbajor, G.K.; Achuba, F.I. Effect of Titanium Oxide (TiO2) on Natural Dyes for the Fabrication of Dye-Sensitized Solar Cells. Eng. Proc. 2024, 63, 25. https://doi.org/10.3390/engproc2024063025
Ezeh IM, Enaroseha OOE, Agbajor GK, Achuba FI. Effect of Titanium Oxide (TiO2) on Natural Dyes for the Fabrication of Dye-Sensitized Solar Cells. Engineering Proceedings. 2024; 63(1):25. https://doi.org/10.3390/engproc2024063025
Chicago/Turabian StyleEzeh, Isioma M., Omamoke O. E. Enaroseha, Godwin K. Agbajor, and Fidelis I. Achuba. 2024. "Effect of Titanium Oxide (TiO2) on Natural Dyes for the Fabrication of Dye-Sensitized Solar Cells" Engineering Proceedings 63, no. 1: 25. https://doi.org/10.3390/engproc2024063025
APA StyleEzeh, I. M., Enaroseha, O. O. E., Agbajor, G. K., & Achuba, F. I. (2024). Effect of Titanium Oxide (TiO2) on Natural Dyes for the Fabrication of Dye-Sensitized Solar Cells. Engineering Proceedings, 63(1), 25. https://doi.org/10.3390/engproc2024063025