Hybrid Transient-Machine Learning Methodology for Leak Detection in Water Transmission Mains †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Washali, T.; Sharma, S.; Kennedy, M. Methods of Assessment of Water Losses in Water Supply Systems: A Review. Water Resour. Manag. 2016, 30, 4985–5001. [Google Scholar] [CrossRef]
- Capponi, C.; Martins, N.; Covas, D.I.; Brunone, B.; Meniconi, S. Transient Test-Based Techniques for Checking the Sealing of In-Line Shut-Off Valves and Capturing the Effect of Series Junctions—Field Tests in a Real Pipe System. Water 2024, 16, 3. [Google Scholar] [CrossRef]
- Meniconi, S.; Brunone, B.; Tirello, L.; Rubin, A.; Cifrodelli, M.; Capponi, C. Transient Tests for Checking the Trieste Subsea Pipeline 2: Diving into Fault Detection. J. Mar. Sci. Eng. 2024, 12, 391. [Google Scholar] [CrossRef]
- Meniconi, S.; Capponi, C.; Frisinghelli, M.; Brunone, B. Leak Detection in a Real Transmission Main Through Transient Tests: Deeds and Misdeeds. Water Resour. Res. 2021, 57, e2020WR027838. [Google Scholar] [CrossRef]
- Bohorquez, J.; Alexander, B.; Simpson, A.R.; Lambert, M.F. Leak Detection and Topology Identification in Pipelines Using Fluid Transients and Artificial Neural Networks. J. Water Resour. Plan. Manag. 2020, 146, 04020040. [Google Scholar] [CrossRef]
- Ayati, A.H.; Haghighi, A.; Ghafouri, H.R. Machine Learning–Assisted Model for Leak Detection in Water Distribution Networks Using Hydraulic Transient Flows. J. Water Resour. Plan. Manag. 2022, 148, 04021104. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Brentan, B.M.; Righetti, M.; Herrera, M. Novel Approach for Burst Detection in Water Distribution Systems Based on Graph Neural Networks. Sustain. Cities Soc. 2022, 86, 104090. [Google Scholar] [CrossRef]
- Bertaglia, G.; Ioriatti, M.; Valiani, A.; Dumbser, M.; Caleffi, V. Numerical Methods for Hydraulic Transients in Visco-Elastic Pipes. J. Fluids Struct. 2018, 81, 230–254. [Google Scholar] [CrossRef]
- Zanfei, A.; Brentan, B.M.; Menapace, A.; Righetti, M. A short-term water demand forecasting model using multivariate long short-term memory with meteorological data. J. Hydroinform. 2022, 24, 1053–1065. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Righetti, M. An artificial intelligence approach for managing water demand in water supply systems. IOP Conf. Ser. Earth Environ. Sci. 2023, 1136, 012004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capponi, C.; Menapace, A.; Meniconi, S.; Torre, D.D.; Tavelli, M.; Righetti, M.; Brunone, B. Hybrid Transient-Machine Learning Methodology for Leak Detection in Water Transmission Mains. Eng. Proc. 2024, 69, 142. https://doi.org/10.3390/engproc2024069142
Capponi C, Menapace A, Meniconi S, Torre DD, Tavelli M, Righetti M, Brunone B. Hybrid Transient-Machine Learning Methodology for Leak Detection in Water Transmission Mains. Engineering Proceedings. 2024; 69(1):142. https://doi.org/10.3390/engproc2024069142
Chicago/Turabian StyleCapponi, Caterina, Andrea Menapace, Silvia Meniconi, Daniele Dalla Torre, Maurizio Tavelli, Maurizio Righetti, and Bruno Brunone. 2024. "Hybrid Transient-Machine Learning Methodology for Leak Detection in Water Transmission Mains" Engineering Proceedings 69, no. 1: 142. https://doi.org/10.3390/engproc2024069142
APA StyleCapponi, C., Menapace, A., Meniconi, S., Torre, D. D., Tavelli, M., Righetti, M., & Brunone, B. (2024). Hybrid Transient-Machine Learning Methodology for Leak Detection in Water Transmission Mains. Engineering Proceedings, 69(1), 142. https://doi.org/10.3390/engproc2024069142