Harnessing Artificial Intelligence for Optimum Performance in Industrial Automation †
Abstract
:1. Introduction
2. Fundamental Concepts
3. Literature Review
4. Research Synthesis
References | Key Focus | Methods/Approaches | Application Area |
---|---|---|---|
[1] | Predictive Maintenance, Monitoring | BCT, CART | Industrial Machine |
[2] | Literature Review in Predictive Maintenance | KNN, CART, LSTM | General |
[3] | Anomaly Detection, Predictive Maintenance, System Modeling | K-means, Fuzzy Clustering, GA | Industrial Plants |
[4] | Predictive Maintenance, Industry 4.0, Sustainability | Decision Tree, CART | Industry 4.0 |
[5] | Predictive Maintenance, Automotive Industry | KNN, CART, LSTM | Automotive Industry |
[6] | Predictive Maintenance, Industry 4.0, IoT, fog Computing | K-means, Fuzzy Clustering, GA | Industry 4.0 |
[7] | Predictive Maintenance, IIoT, Condition Monitoring | Machine Learning | Condition Monitoring |
[8] | Predictive Scheduling, Resource Allocation | LSTM | Manufacturing Systems |
[9] | Production Scheduling, Deep Reinforcement Learning | DQN, RL | Production Scheduling |
[10] | Resource Allocation, Industrial IoT, Deep Reinforcement Learning | Deep Reinforcement Learning | IIoT |
[11] | Adaptive Production Control, Reinforcement Learning | Reinforcement Learning | Production Control |
[12] | Scheduling, Discrete Automated Production Line, Deep Reinforcement Learning | Deep Reinforcement Learning | Automated Production Line |
[13] | Reinforcement Learning, Industrial Automation | Reinforcement Learning | Industrial Automation |
[26] | Dynamic Scheduling, Industry 3.5, Deep RL, Hybrid Genetic Method | Deep Reinforcement Learning, Hybrid Genetic Algorithm | Smart Production |
[14] | Reinforcement Learning, Production Planning, Control | Reinforcement Learning | Production Planning and Control |
[15] | Meta-Reinforcement Learning, Machining Parameters, Energy-Efficient Process Control | Meta-Reinforcement Learning | Process Control |
[16] | Surface Defect Inspection, Deep Learning | Deep Learning | Industrial Products |
[17] | Machine Learning, Industrial Applications | Literature Review | Industrial Applications |
[18] | Machine Vision, Defective Product Inspection | KNN, CNN | Defective Product Inspection |
[19] | AOI, Quality Monitoring, Electronics Industry | Review, Analysis | Electronics Industry |
[20] | Intelligent Defect Detection, Machine Learning | CNN, GAN | General |
[22] | Machine Learning, Industry 4.0 | Machine Learning | Industry 4.0 |
[23] | Automated Visual Inspection, Semiconductor Industry | Survey | Semiconductor Industry |
[24] | Automatic Fault Detection, Steel Products | SVM, DT | Steel Products |
[21] | Automated Defect Inspection, Concrete Structures | CNN, LiDAR | Concrete Structures |
[25,27] | Fabric Defect Detection | Review | Textile Manufacturing |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masani, K.I.; Oza, P.; Agrawal, S. Predictive maintenance and monitoring of industrial machine using machine learning. Scalable Comput. Pract. Exp. 2019, 20, 663–668. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.D.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Kroll, B.; Schaffranek, D.; Schriegel, S.; Niggemann, O. System modeling based on machine learning for anomaly detection and predictive maintenance in industrial plants. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014. [Google Scholar]
- Abidi, M.H.; Mohammed, M.K.; Alkhalefah, H. Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability 2022, 14, 3387. [Google Scholar] [CrossRef]
- Arena, F.; Collotta, M.; Luca, L.; Ruggieri, M.; Termine, F.G. Predictive Maintenance in the Automotive Sector: A Literature Review. Math. Comput. Appl. 2021, 27, 2. [Google Scholar] [CrossRef]
- Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and fog-computing-based predictive maintenance model for effective asset management in Industry 4.0 using machine learning. IEEE Internet Things J. 2021, 10, 2087–2094. [Google Scholar] [CrossRef]
- Cakir, M.; Guvenc, M.A.; Mistikoglu, S. The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system. Comput. Ind. Eng. 2021, 151, 106948. [Google Scholar] [CrossRef]
- Morariu, C.; Morariu, O.; Răileanu, S.; Borangiu, T. Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput. Ind. 2020, 120, 103244. [Google Scholar] [CrossRef]
- Waschneck, B.; Reichstaller, A.; Belzner, L.; Altenmüller, T.; Bauernhansl, T.; Knapp, A.; Kyek, A. Optimization of global production scheduling with deep reinforcement learning. Procedia CIRP 2018, 72, 1264–1269. [Google Scholar] [CrossRef]
- Rosenberger, J.; Urlaub, M.; Rauterberg, F.; Lutz, T.; Selig, A.; Bühren, M.; Schramm, D. Deep reinforcement learning multi-agent system for resource allocation in industrial internet of things. Sensors 2022, 22, 4099. [Google Scholar] [CrossRef]
- Kuhnle, A.; Kaiser, J.P.; Theiß, F.; Stricker, N.; Lanza, G. Designing an adaptive production control system using reinforcement learning. J. Intell. Manuf. 2021, 32, 855–876. [Google Scholar] [CrossRef]
- Shi, D.; Fan, W.; Xiao, Y.; Lin, T.; Xing, C. Intelligent scheduling of discrete automated production line via deep reinforcement learning. Int. J. Prod. Res. 2020, 58, 3362–3380. [Google Scholar] [CrossRef]
- Xin, Q.; Wu, G.; Fang, W.; Cao, J.; Ping, Y. Opportunities for Reinforcement Learning in Industrial Automation. In Proceedings of the 2021 7th International Conference on Big Data and Information Analytics (BigDIA), Chongqing, China, 29–31 October 2021. [Google Scholar]
- Esteso, A.; Peidro, D.; Mula, J.; Díaz-Madroñero, M. Reinforcement learning applied to production planning and control. Int. J. Prod. Res. 2023, 61, 5772–5789. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, C.; Tang, Y.; Li, L. Meta-reinforcement learning of machining parameters for energy-efficient process control of flexible turning operations. IEEE Trans. Autom. Sci. Eng. 2019, 18, 5–18. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, S.; Kong, Y.; Chen, J. Recent advances in surface defect inspection of industrial products using deep learning techniques. Int. J. Adv. Manuf. Technol. 2021, 113, 35–58. [Google Scholar] [CrossRef]
- Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine Learning for industrial applications: A comprehensive literature review. Expert Syst. Appl. 2021, 175, 114820. [Google Scholar] [CrossRef]
- Benbarrad, T.; Salhaoui, M.; Kenitar, S.B.; Arioua, M. Intelligent machine vision model for defective product inspection based on machine learning. J. Sens. Actuator Netw. 2021, 10, 7. [Google Scholar] [CrossRef]
- Abd Al Rahman, M.; Mousavi, A. A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry. IEEE Access 2020, 8, 183192–183271. [Google Scholar]
- Huang, C.-C.; Lin, X.-P. Study on machine learning based intelligent defect detection system. MATEC Web Conf. 2018, 201, 01010. [Google Scholar] [CrossRef]
- Chow, J.K.; Liu, K.F.; Tan, P.S.; Su, Z.; Wu, J.; Li, Z.; Wang, Y.H. Automated defect inspection of concrete structures. Autom. Constr. 2021, 132, 103959. [Google Scholar] [CrossRef]
- Rai, R.; Tiwari, M.K.; Ivanov, D.; Dolgui, A. Machine learning in manufacturing and industry 4.0 applications. Int. J. Prod. Res. 2021, 59, 4773–4778. [Google Scholar] [CrossRef]
- Huang, S.-H.; Pan, Y.-C. Automated visual inspection in the semiconductor industry: A survey. Comput. Ind. 2015, 66, 1–10. [Google Scholar] [CrossRef]
- Ghorai, S.; Mukherjee, A.; Gangadaran, M.; Dutta, P.K. Automatic defect detection on hot-rolled flat steel products. IEEE Trans. Instrum. Meas. 2012, 62, 612–621. [Google Scholar] [CrossRef]
- Ngan, H.Y.T.; Pang, G.K.H.; Yung, N.H.C. Automated fabric defect detection—A review. Image Vis. Comput. 2011, 29, 442–458. [Google Scholar] [CrossRef]
- Chien, C.-F.; Lan, Y.-B. Agent-based approach integrating deep reinforcement learning and hybrid genetic algorithm for dynamic scheduling for Industry 3.5 smart production. Comput. Ind. Eng. 2021, 162, 107782. [Google Scholar] [CrossRef]
- Khan, T.; Alam, M.; Kadir, K.; Shahid, Z.; Mazliham, M.S.; Khan, S.; Miqdad, M. Foreign objects debris (FOD) identification: A cost effective investigation of FOD with less false alarm rate. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, 28–30 November 2017; pp. 1–4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, T.A.; Ali, S.M.; Ali, K.M.; Aziz, A.; Ahmad, S.; Anwar, A.; Khan, S.A. Harnessing Artificial Intelligence for Optimum Performance in Industrial Automation. Eng. Proc. 2024, 76, 105. https://doi.org/10.3390/engproc2024076105
Khan TA, Ali SM, Ali KM, Aziz A, Ahmad S, Anwar A, Khan SA. Harnessing Artificial Intelligence for Optimum Performance in Industrial Automation. Engineering Proceedings. 2024; 76(1):105. https://doi.org/10.3390/engproc2024076105
Chicago/Turabian StyleKhan, Talha Ahmed, Syed Mubashir Ali, Kanwar Mansoor Ali, Asif Aziz, Sadique Ahmad, Azeem Anwar, and Sharfuddin Ahmed Khan. 2024. "Harnessing Artificial Intelligence for Optimum Performance in Industrial Automation" Engineering Proceedings 76, no. 1: 105. https://doi.org/10.3390/engproc2024076105
APA StyleKhan, T. A., Ali, S. M., Ali, K. M., Aziz, A., Ahmad, S., Anwar, A., & Khan, S. A. (2024). Harnessing Artificial Intelligence for Optimum Performance in Industrial Automation. Engineering Proceedings, 76(1), 105. https://doi.org/10.3390/engproc2024076105